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Foreword

Hadoop got its start in Nutch. A few of us were attempting to build an open source
web search engine and having trouble managing computations running on even a
handful of computers. Once Google published its GFS and MapReduce papers, the
route became clear. They’d devised systems to solve precisely the problems we were
having with Nutch. So we started, two of us, half-time, to try to re-create these systems
as a part of Nutch.

We managed to get Nutch limping along on 20 machines, but it soon became clear that
to handle the Web’s massive scale, we’d need to run it on thousands of machines and,
moreover, that the job was bigger than two half-time developers could handle.

Around that time, Yahoo! got interested, and quickly put together a team that I joined.
We split off the distributed computing part of Nutch, naming it Hadoop. With the help
of Yahoo!, Hadoop soon grew into a technology that could truly scale to the Web.

In 2006, Tom White started contributing to Hadoop. I already knew Tom through an
excellent article he’d written about Nutch, so I knew he could present complex ideas
in clear prose. I soon learned that he could also develop software that was as pleasant
to read as his prose.

From the beginning, Tom’s contributions to Hadoop showed his concern for users and
for the project. Unlike most open source contributors, Tom is not primarily interested
in tweaking the system to better meet his own needs, but rather in making it easier for
anyone to use.

Initially, Tom specialized in making Hadoop run well on Amazon’s EC2 and S3 serv-
ices. Then he moved on to tackle a wide variety of problems, including improving the
MapReduce APIs, enhancing the website, and devising an object serialization frame-
work. In all cases, Tom presented his ideas precisely. In short order, Tom earned the
role of Hadoop committer and soon thereafter became a member of the Hadoop Project
Management Committee.

Tom is now a respected senior member of the Hadoop developer community. Though
he’s an expert in many technical corners of the project, his specialty is making Hadoop
easier to use and understand.

XV



Given this, I was very pleased when I learned that Tom intended to write a book about
Hadoop. Who could be better qualified? Now you have the opportunity to learn about
Hadoop from a master—not only of the technology, but also of common sense and
plain talk.

—Doug Cutting
Shed in the Yard, California

xvi | Foreword



Preface

Martin Gardner, the mathematics and science writer, once said in an interview:

Beyond calculus, I am lost. That was the secret of my column’s success. It took me so
long to understand what I was writing about that I knew how to write in a way most
readers would understand.!

In many ways, this is how I feel about Hadoop. Its inner workings are complex, resting
as they do on a mixture of distributed systems theory, practical engineering, and com-
mon sense. And to the uninitiated, Hadoop can appear alien.

But it doesn’t need to be like this. Stripped to its core, the tools that Hadoop provides
for building distributed systems—for data storage, data analysis, and coordination—
are simple. If there’s a common theme, it is about raising the level of abstraction—to
create building blocks for programmers who just happen to have lots of data to store,
or lots of data to analyze, or lots of machines to coordinate, and who don’t have the
time, the skill, or the inclination to become distributed systems experts to build the
infrastructure to handle it.

With such a simple and generally applicable feature set, it seemed obvious to me when
[ started using it that Hadoop deserved to be widely used. However, at the time (in
early 2006), setting up, configuring, and writing programs to use Hadoop was an art.
Things have certainly improved since then: there is more documentation, there are
more examples, and there are thriving mailing lists to go to when you have questions.
And yet the biggest hurdle for newcomers is understanding what this technology is
capable of, where it excels, and how to use it. That is why I wrote this book.

The Apache Hadoop community has come a long way. Over the course of three years,
the Hadoop project has blossomed and spun off half a dozen subprojects. In this time,
the software has made great leaps in performance, reliability, scalability, and manage-
ability. To gain even wider adoption, however, I believe we need to make Hadoop even
easier to use. This will involve writing more tools; integrating with more systems; and

1. “The science of fun,” Alex Bellos, The Guardian, May 31, 2008, http://www.guardian.co.uk/science/
2008/may/31/maths.science.
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writing new, improved APIs. I'm looking forward to being a part of this, and I hope
this book will encourage and enable others to do so, too.

Administrative Notes

During discussion of a particular Java class in the text, I often omit its package name
to reduce clutter. If you need to know which package a class is in, you can easily look
it up in Hadoop’s Java API documentation for the relevant subproject, linked to from
the Apache Hadoop home page at http://hadoop.apache.org/. Or if you’re using an IDE,
it can help using its auto-complete mechanism.

Similarly, although it deviates from usual style guidelines, program listings that import
multiple classes from the same package may use the asterisk wildcard character to save
space (for example, import org.apache.hadoop.io.*).

The sample programs in this book are available for download from the website that
accompanies this book: http://'www.hadoopbook.com/. You will also find instructions
there for obtaining the datasets that are used in examples throughout the book, as well
as further notes for running the programs in the book, and links to updates, additional
resources, and my blog.

What's in This Book?

The rest of this book is organized as follows. Chapter 1 emphasizes the need for Hadoop
and sketches the history of the project. Chapter 2 provides an introduction to
MapReduce. Chapter 3 looks at Hadoop filesystems, and in particular HDFS, in depth.
Chapter 4 covers the fundamentals of I/O in Hadoop: data integrity, compression,
serialization, and file-based data structures.

The next four chapters cover MapReduce in depth. Chapter 5 goes through the practical
steps needed to develop a MapReduce application. Chapter 6 looks at how MapReduce
is implemented in Hadoop, from the point of view of a user. Chapter 7 is about the
MapReduce programming model and the various data formats that MapReduce can
work with. Chapter 8 is on advanced MapReduce topics, including sorting and joining
data.

Chapters 9 and 10 are for Hadoop administrators and describe how to set up and
maintain a Hadoop cluster running HDFS and MapReduce.

Later chapters are dedicated to projects that build on Hadoop or are related to it.
Chapters 11 and 12 present Pig and Hive, which are analytics platforms built on HDFS
and MapReduce, whereas Chapters 13, 14, and 15 cover HBase, ZooKeeper, and
Sqoop, respectively.

Finally, Chapter 16 is a collection of case studies contributed by members of the Apache
Hadoop community.
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What's New in the Second Edition?

The second edition has two new chapters on Hive and Sqoop (Chapters 12 and 15), a
new section covering Avro (in Chapter 4), an introduction to the new security features
in Hadoop (in Chapter 9), and a new case study on analyzing massive network graphs
using Hadoop (in Chapter 16).

This edition continues to describe the 0.20 release series of Apache Hadoop because
this was the latest stable release at the time of writing. New features from later releases
are occasionally mentioned in the text, however, with reference to the version that they
were introduced in.

What's New in the Third Edition?

The third edition covers the 1.x (formerly 0.20) release series of Apache Hadoop, as
well as the newer 0.22 and 2.x (formerly 0.23) series. With a few exceptions, which are
noted in the text, all the examples in this book run against these versions. The features
in each release series are described at a high level in “Hadoop Releases”
on page 13.

This edition uses the new MapReduce API for most of the examples. Because the old
API s still in widespread use, it continues to be discussed in the text alongside the new
API, and the equivalent code using the old API can be found on the book’s website.

The major change in Hadoop 2.0 is the new MapReduce runtime, MapReduce 2, which
is built on a new distributed resource management system called YARN. This edition
includes new sections covering MapReduce on YARN: how it works (Chapter 6) and
how to run it (Chapter 9).

There is more MapReduce material, too, including development practices such as
packaging MapReduce jobs with Maven, setting the user’s Java classpath, and writing
tests with MRUnit (all in Chapter 5); and more depth on features such as output com-
mitters, the distributed cache (both in Chapter 8), and task memory monitoring (Chap-
ter 9). There is a new section on writing MapReduce jobs to process Avro data (Chapter
4), and one on running a simple MapReduce workflow in Oozie (Chapter 5).

The chapter on HDFS (Chapter 3) now has introductions to high availability, federa-
tion, and the new WebHDFS and HttpFS filesystems.

The chapters on Pig, Hive, Sqoop, and ZooKeeper have all been expanded to cover the
new features and changes in their latest releases.

In addition, numerous corrections and improvements have been made throughout the
book.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

B A
\
" \‘
as
[N
SN

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop: The Definitive Guide, Third Ed-
ition, by Tom White. Copyright 2011 Tom White, 978-1-449-31152-0.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.
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Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business. Technology profes-
sionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for re-
search, problem solving, learning, and certification training.

Safari

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449311520
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia
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CHAPTER1

Meet Hadoop

In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log,
they didn’t try to grow a larger ox. We shouldn’t be trying for bigger computers, but for
more systems of computers.

—Grace Hopper

Data!

We live in the data age. It’s not easy to measure the total volume of data stored elec-
tronically, but an IDC estimate put the size of the “digital universe” at 0.18 zettabytes
in 2006 and is forecasting a tenfold growth by 2011 to 1.8 zettabytes.! A zettabyte is
10%! bytes, or equivalently one thousand exabytes, one million petabytes, or one billion
terabytes. That’s roughly the same order of magnitude as one disk drive for every person
in the world.

This flood of data is coming from many sources. Consider the following:2

The New York Stock Exchange generates about one terabyte of new trade data per
day.

Facebook hosts approximately 10 billion photos, taking up one petabyte of storage.
Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.

The Internet Archive stores around 2 petabytes of data and is growing at a rate of
20 terabytes per month.

The Large Hadron Collider near Geneva, Switzerland, will produce about 15
petabytes of data per year.

. From Gantz et al., “The Diverse and Exploding Digital Universe,” March 2008 (http://www.emc.com/

collateral/analyst-reports/diverse-exploding-digital-universe.pdf).

. http://www.intelligententerprise.com/showArticle.jhtml?articleID=207800705, http://mashable.com/

2008/10/15/facebook-10-billion-photos/, http://blog.familytreemagazine.com/insider/Inside
+Ancestrycoms+TopSecret+Data+Center.aspx, http://www.archive.org/about/faqs.php, and http://www
.interactions.org/cms/?pid=1027032
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So there’s a lot of data out there. But you are probably wondering how it affects you.
Most of the data is locked up in the largest web properties (like search engines) or in
scientific or financial institutions, isn’t it? Does the advent of “Big Data,” as it is being
called, affect smaller organizations or individuals?

[ argue that it does. Take photos, for example. My wife’s grandfather was an avid
photographer and took photographs throughout his adult life. His entire corpus of
medium-format, slide, and 35mm film, when scanned in at high resolution, occupies
around 10 gigabytes. Compare this to the digital photos that my family took in 2008,
which take up about 5 gigabytes of space. My family is producing photographic data
at 35 times the rate my wife’s grandfather’s did, and the rate is increasing every year as
it becomes easier to take more and more photos.

More generally, the digital streams that individuals are producing are growing apace.
Microsoft Research’s MyLifeBits project gives a glimpse of the archiving of personal
information that may become commonplace in the near future. MyLifeBits was an
experiment where an individual’s interactions—phone calls, emails, documents—were
captured electronically and stored for later access. The data gathered included a photo
taken every minute, which resulted in an overall data volume of one gigabyte per month.
When storage costs come down enough to make it feasible to store continuous audio
and video, the data volume for a future MyLifeBits service will be many times that.

The trend is for every individual’s data footprint to grow, but perhaps more important,
the amount of data generated by machines will be even greater than that generated by
people. Machine logs, RFID readers, sensor networks, vehicle GPS traces, retail
transactions—all of these contribute to the growing mountain of data.

The volume of data being made publicly available increases every year, too. Organiza-
tions no longer have to merely manage their own data; success in the future will be
dictated to a large extent by their ability to extract value from other organizations’ data.

Initiatives such as Public Data Sets on Amazon Web Services, Infochimps.org, and
theinfo.org exist to foster the “information commons,” where data can be freely (or in
the case of AWS, for a modest price) shared for anyone to download and analyze.
Mashups between different information sources make for unexpected and hitherto
unimaginable applications.

Take, for example, the Astrometry.net project, which watches the Astrometry group
on Flickr for new photos of the night sky. It analyzes each image and identifies which
part of the sky it is from, as well as any interesting celestial bodies, such as stars or
galaxies. This project shows the kind of things that are possible when data (in this case,
tagged photographic images) is made available and used for something (image analysis)
that was not anticipated by the creator.

It has been said that “more data usually beats better algorithms,” which is to say that
for some problems (such as recommending movies or music based on past preferences),
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however fiendish your algorithms are, often they can be beaten simply by having more
data (and a less sophisticated algorithm).3

The good news is that Big Data is here. The bad news is that we are struggling to store
and analyze it.

Data Storage and Analysis

The problem is simple: although the storage capacities of hard drives have increased
massively over the years, access speeds—the rate at which data can be read from drives
—have not kept up. One typical drive from 1990 could store 1,370 MB of data and had
a transfer speed of 4.4 MB/s,* so you could read all the data from a full drive in around
five minutes. Over 20 years later, one terabyte drives are the norm, but the transfer

speed is around 100 MB/s, so it takes more than two and a half hours to read all the
data off the disk.

This is a long time to read all data on a single drive—and writing is even slower. The
obvious way to reduce the time is to read from multiple disks at once. Imagine if we
had 100 drives, each holding one hundredth of the data. Working in parallel, we could
read the data in under two minutes.

Using only one hundredth of a disk may seem wasteful. But we can store one hundred
datasets, each of which is one terabyte, and provide shared access to them. We can
imagine that the users of such a system would be happy to share access in return for
shorter analysis times, and, statistically, that their analysis jobs would be likely to be
spread over time, so they wouldn’t interfere with each other too much.

There’s more to being able to read and write data in parallel to or from multiple disks,
though.

The first problem to solve is hardware failure: as soon as you start using many pieces
of hardware, the chance that one will fail is fairly high. A common way of avoiding data
loss is through replication: redundant copies of the data are kept by the system so that
in the event of failure, there is another copy available. This is how RAID works, for
instance, although Hadoop’s filesystem, the Hadoop Distributed Filesystem (HDFS),
takes a slightly different approach, as you shall see later.

The second problem is that most analysis tasks need to be able to combine the data in
some way, and data read from one disk may need to be combined with the data from
any of the other 99 disks. Various distributed systems allow data to be combined from
multiple sources, but doing this correctly is notoriously challenging. MapReduce pro-
vides a programming model that abstracts the problem from disk reads and writes,

3. The quote is from Anand Rajaraman writing about the Netflix Challenge (http://anand.typepad.com/
datawocky/2008/03/more-data-usual.html). Alon Halevy, Peter Norvig, and Fernando Pereira make the
same point in “The Unreasonable Effectiveness of Data,” IEEE Intelligent Systems, March/April 2009.

4. These specifications are for the Seagate ST-41600n.
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transforming it into a computation over sets of keys and values. We look at the details
of this model in later chapters, but the important point for the present discussion is
that there are two parts to the computation, the map and the reduce, and it’s the in-
terface between the two where the “mixing” occurs. Like HDFS, MapReduce has built-
in reliability.

This, in a nutshell, is what Hadoop provides: a reliable shared storage and analysis
system. The storage is provided by HDFS and analysis by MapReduce. There are other
parts to Hadoop, but these capabilities are its kernel.

Comparison with Other Systems

The approach taken by MapReduce may seem like a brute-force approach. The premise
is that the entire dataset—or at least a good portion of it—is processed for each query.
But this is its power. MapReduce is a batch query processor, and the ability to run an
ad hoc query against your whole dataset and get the results in a reasonable time is
transformative. It changes the way you think about data and unlocks data that was
previously archived on tape or disk. It gives people the opportunity to innovate with
data. Questions that took too long to get answered before can now be answered, which
in turn leads to new questions and new insights.

For example, Mailtrust, Rackspace’s mail division, used Hadoop for processing email
logs. One ad hoc query they wrote was to find the geographic distribution of their users.
In their words:

This data was so useful that we’ve scheduled the MapReduce job to run monthly and we
will be using this data to help us decide which Rackspace data centers to place new mail
servers in as we grow.

By bringing several hundred gigabytes of data together and having the tools to analyze
it, the Rackspace engineers were able to gain an understanding of the data that they
otherwise would never have had, and, furthermore, they were able to use what they
had learned to improve the service for their customers. You can read more about how
Rackspace uses Hadoop in Chapter 16.

Rational Database Management System

Why can’t we use databases with lots of disks to do large-scale batch analysis? Why is
MapReduce needed?
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The answer to these questions comes from another trend in disk drives: seek time is
improving more slowly than transfer rate. Seeking is the process of moving the disk’s
head to a particular place on the disk to read or write data. It characterizes the latency
of a disk operation, whereas the transfer rate corresponds to a disk’s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large
portions of the dataset than streaming through it, which operates at the transfer rate.
On the other hand, for updating a small proportion of records in a database, a tradi-
tional B-Tree (the data structure used in relational databases, which is limited by the
rate it can perform seeks) works well. For updating the majority of a database, a B-Tree
is less efficient than MapReduce, which uses Sort/Merge to rebuild the database.

In many ways, MapReduce can be seen as a complement to a Rational Database Man-
agement System (RDBMS). (The differences between the two systems are shown in
Table 1-1.) MapReduce is a good fit for problems that need to analyze the whole dataset
in a batch fashion, particularly for ad hoc analysis. An RDBMS is good for point queries
or updates, where the dataset has been indexed to deliver low-latency retrieval and
update times of a relatively small amount of data. MapReduce suits applications where
the data is written once and read many times, whereas a relational database is good for
datasets that are continually updated.

Table 1-1. RDBMS compared to MapReduce

Traditional RDBMS MapReduce
Datasize  Gigabytes Petabytes
Access Interactive and batch Batch

Updates Read and write many times ~ Write once, read many times

Structure  Static schema Dynamic schema
Integrity  High Low
Scaling Nonlinear Linear

Another difference between MapReduce and an RDBMS is the amount of structure in
the datasets on which they operate. Structured data is data that is organized into entities
that have a defined format, such as XML documents or database tables that conform
to a particular predefined schema. This is the realm of the RDBMS. Semi-structured
data, on the other hand, is looser, and though there may be a schema, it is often ignored,
so it may be used only as a guide to the structure of the data: for example, a spreadsheet,
in which the structure is the grid of cells, although the cells themselves may hold any
form of data. Unstructured data does not have any particular internal structure: for
example, plain text or image data. MapReduce works well on unstructured or semi-
structured data because it is designed to interpret the data at processing time. In other
words, the input keys and values for MapReduce are not intrinsic properties of the data,
but they are chosen by the person analyzing the data.
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Relational data is often normalized to retain its integrity and remove redundancy.
Normalization poses problems for MapReduce because it makes reading a record a
nonlocal operation, and one of the central assumptions that MapReduce makes is that
it is possible to perform (high-speed) streaming reads and writes.

A web server log is a good example of a set of records that is not normalized (for ex-
ample, the client hostnames are specified in full each time, even though the same client
may appear many times), and this is one reason that logfiles of all kinds are particularly
well-suited to analysis with MapReduce.

MapReduce is a linearly scalable programming model. The programmer writes two
functions—a map function and a reduce function—each of which defines a mapping
from one set of key-value pairs to another. These functions are oblivious to the size of
the data or the cluster that they are operating on, so they can be used unchanged for a
small dataset and for a massive one. More important, if you double the size of the input
data, a job will run twice as slow. But if you also double the size of the cluster, a job
will run as fast as the original one. This is not generally true of SQL queries.

Over time, however, the differences between relational databases and MapReduce sys-
tems are likely to blur—both as relational databases start incorporating some of the
ideas from MapReduce (such as Aster Data’s and Greenplum’s databases) and, from
the other direction, as higher-level query languages built on MapReduce (such as Pig
and Hive) make MapReduce systems more approachable for traditional database
programmers.>

Grid Computing

The High Performance Computing (HPC) and Grid Computing communities have
been doing large-scale data processing for years, using such Application Program In-
terfaces (APIs) as Message Passing Interface (MPI). Broadly, the approach in HPC is to
distribute the work across a cluster of machines, which access a shared filesystem,
hosted by a Storage Area Network (SAN). This works well for predominantly compute-
intensive jobs, but it becomes a problem when nodes need to access larger data volumes
(hundreds of gigabytes, the point at which MapReduce really starts to shine), since the
network bandwidth is the bottleneck and compute nodes become idle.

5. In January 2007, David J. DeWitt and Michael Stonebraker caused a stir by publishing “MapReduce: A
major step backwards,” in which they criticized MapReduce for being a poor substitute for relational
databases. Many commentators argued that it was a false comparison (see, for example, Mark C. Chu-
Carroll’s “Databases are hammers; MapReduce is a screwdriver,” and DeWitt and Stonebraker followed
up with “MapReduce II,” where they addressed the main topics brought up by others.
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MapReduce tries to collocate the data with the compute node, so data access is fast
because it is local.¢ This feature, known as data locality, is at the heart of MapReduce
and is the reason for its good performance. Recognizing that network bandwidth is the
most precious resource in a data center environment (it is easy to saturate network links
by copying data around), MapReduce implementations go to great lengths to conserve
it by explicitly modelling network topology. Notice that this arrangement does not
preclude high-CPU analyses in MapReduce.

MPI gives great control to the programmer, but requires that he explicitly handle the
mechanics of the data flow, exposed via low-level C routines and constructs such as
sockets, as well as the higher-level algorithm for the analysis. MapReduce operates only
at the higher level: the programmer thinks in terms of functions of key and value pairs,
and the data flow is implicit.

Coordinating the processes in a large-scale distributed computation is a challenge. The
hardest aspect is gracefully handling partial failure—when you don’t know whether or
not a remote process has failed—and still making progress with the overall computa-
tion. MapReduce spares the programmer from having to think about failure, since the
implementation detects failed map or reduce tasks and reschedules replacements on
machines that are healthy. MapReduce is able to do this because it is a shared-noth-
ing architecture, meaning that tasks have no dependence on one other. (This is a slight
oversimplification, since the output from mappers is fed to the reducers, but this is
under the control of the MapReduce system; in this case, it needs to take more care
rerunning a failed reducer than rerunning a failed map because it has to make sure it
can retrieve the necessary map outputs, and if not, regenerate them by running the
relevant maps again.) So from the programmer’s point of view, the order in which the
tasks run doesn’t matter. By contrast, MPI programs have to explicitly manage their
own checkpointing and recovery, which gives more control to the programmer but
makes them more difficult to write.

MapReduce might sound like quite a restrictive programming model, and in a sense it
is: you are limited to key and value types that are related in specified ways, and mappers
and reducers run with very limited coordination between one another (the mappers
pass keys and values to reducers). A natural question to ask is: can you do anything
useful or nontrivial with it?

The answer is yes. MapReduce was invented by engineers at Google as a system for
building production search indexes because they found themselves solving the same
problem over and over again (and MapReduce was inspired by older ideas from the
functional programming, distributed computing, and database communities), but it
has since been used for many other applications in many other industries. Itis pleasantly
surprising to see the range of algorithms that can be expressed in MapReduce, from

6. Jim Gray was an early advocate of putting the computation near the data. See “Distributed Computing
Economics,” March 2003, http://research.microsoft.com/apps/pubs/default.aspx?id=70001.
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image analysis, to graph-based problems, to machine learning algorithms.” It can’t
solve every problem, of course, but it is a general data-processing tool.

You can see a sample of some of the applications that Hadoop has been used for in
Chapter 16.

Volunteer Computing

When people first hear about Hadoop and MapReduce, they often ask, “How is it
different from SETI@home?” SETI, the Search for Extra-Terrestrial Intelligence, runs
aproject called SETI@home in which volunteers donate CPU time from their otherwise
idle computers to analyze radio telescope data for signs of intelligent life outside earth.
SETI@home is the most well-known of many volunteer computing projects; others in-
clude the Great Internet Mersenne Prime Search (to search for large prime numbers)
and Folding@home (to understand protein folding and how it relates to disease).

Volunteer computing projects work by breaking the problem they are trying to
solve into chunks called work units, which are sent to computers around the world to
be analyzed. For example, a SETI@home work unit is about 0.35 MB of radio telescope
data, and takes hours or days to analyze on a typical home computer. When the analysis
is completed, the results are sent back to the server, and the client gets another work
unit. As a precaution to combat cheating, each work unit is sent to three different
machines and needs at least two results to agree to be accepted.

Although SETI@home may be superficially similar to MapReduce (breaking a problem
into independent pieces to be worked on in parallel), there are some significant differ-
ences. The SETI@home problem is very CPU-intensive, which makes it suitable for
running on hundreds of thousands of computers across the world8 because the time to
transfer the work unit is dwarfed by the time to run the computation on it. Volunteers
are donating CPU cycles, not bandwidth.

MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated
hardware running in a single data center with very high aggregate bandwidth inter-
connects. By contrast, SETI@home runs a perpetual computation on untrusted
machines on the Internet with highly variable connection speeds and no data locality.

7. Apache Mahout (http://mahout.apache.org/) is a project to build machine-learning libraries (such as
classification and clustering algorithms) that run on Hadoop.

8. In January 2008, SETI@home was reported at http://www.planetary.org/programs/projects/setiathome/
setiathome_20080115.html to be processing 300 gigabytes a day, using 320,000 computers (most of which
are not dedicated to SETI@home; they are used for other things, too).
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A Brief History of Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used
text search library. Hadoop has its origins in Apache Nutch, an open source web search
engine, itself a part of the Lucene project.

The Origin of the Name “Hadoop”

The name Hadoop is not an acronym; it’s a made-up name. The project’s creator, Doug
Cutting, explains how the name came about:

The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and
pronounce, meaningless, and not used elsewhere: those are my naming criteria.
Kids are good at generating such. Googol is a kid’s term.

Subprojects and “contrib” modules in Hadoop also tend to have names that are unre-
lated to their function, often with an elephant or other animal theme (“Pig,” for
example). Smaller components are given more descriptive (and therefore more mun-
dane) names. This is a good principle, as it means you can generally work out what
something does from its name. For example, the jobtracker? keeps track of MapReduce
jobs.

Building a web search engine from scratch was an ambitious goal, for not only is the
software required to crawl and index websites complex to write, butitis also a challenge
to run without a dedicated operations team, since there are so many moving parts. It’s
expensive, too: Mike Cafarella and Doug Cutting estimated a system supporting a
one-billion-page index would cost around half a million dollars in hardware, with a
monthly running cost of $30,000.10 Nevertheless, they believed it was a worthy goal,
as it would open up and ultimately democratize search engine algorithms.

Nutch was started in 2002, and a working crawler and search system quickly emerged.
However, they realized that their architecture wouldn’t scale to the billions of pages on
the Web. Help was at hand with the publication of a paper in 2003 that described the
architecture of Google’s distributed filesystem, called GFS, which was being used in
production at Google.1! GFS, or something like it, would solve their storage needs for
the very large files generated as a part of the web crawl and indexing process. In par-
ticular, GFS would free up time being spent on administrative tasks such as managing
storage nodes. In 2004, they set about writing an open source implementation, the
Nutch Distributed Filesystem (NDFS).

9. In this book, we use the lowercase form, “jobtracker,” to denote the entity when it’s being referred
to generally, and the CamelCase form JobTracker to denote the Java class that implements it.

10. See Mike Cafarella and Doug Cutting, “Building Nutch: Open Source Search,” ACM Queue, April 2004,
http://queue.acm.org/detail.cfm?id=988408.

11. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” October 2003,
http://labs.google.com/papers/gfs.html.
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In 2004, Google published the paper that introduced MapReduce to the world.12 Early
in 2005, the Nutch developers had a working MapReduce implementation in Nutch,
and by the middle of that year. All the major Nutch algorithms had been ported to run
using MapReduce and NDFS.

NDFS and the MapReduce implementation in Nutch were applicable beyond the realm
of search, and in February 2006 they moved out of Nutch to form an independent
subproject of Lucene called Hadoop. At around the same time, Doug Cutting joined
Yahoo!, which provided a dedicated team and the resources to turn Hadoop into a
system that ran at web scale (see the sidebar “Hadoop at Yahoo!” on page 11). This
was demonstrated in February 2008 when Yahoo! announced thatits production search
index was being generated by a 10,000-core Hadoop cluster.13

In January 2008, Hadoop was made its own top-level project at Apache, confirming its
success and its diverse, active community. By this time, Hadoop was being used by
many other companies besides Yahoo!, such as Last.fm, Facebook, and the New York
Times. Some applications are covered in the case studies in Chapter 16 and on the
Hadoop wiki.

In one well-publicized feat, the New York Times used Amazon’s EC2 compute cloud
to crunch through four terabytes of scanned archives from the paper, converting them
to PDFs for the Web.14 The processing took less than 24 hours to run using 100 ma-
chines, and the project probably wouldn’t have been embarked upon without the com-
bination of Amazon’s pay-by-the-hour model (which allowed the NYT to access a large
number of machines for a short period) and Hadoop’s easy-to-use parallel program-
ming model.

In April 2008, Hadoop broke a world record to become the fastest system to sort a
terabyte of data. Running on a 910-node cluster, Hadoop sorted one terabyte in 209
seconds (just under 3% minutes), beating the previous year’s winner of 297 seconds
(described in detail in “TeraByte Sort on Apache Hadoop” on page 603). In November
of the same year, Google reported that its MapReduce implementation sorted one ter-
abyte in 68 seconds.15 As the first edition of this book was going to press (May 2009),
it was announced that a team at Yahoo! used Hadoop to sort one terabyte in 62 seconds.

Since then, Hadoop has seen rapid mainstream enterprise adoption. Hadoop’s role as
a general-purpose storage and analysis platform for big data has been recognized by

12. Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters ,”
December 2004, http://labs.google.com/papers/mapreduce.html.

13. “Yahoo! Launches World’s Largest Hadoop Production Application,” 19 February 2008, http://developer
.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html.

14. Derek Gottfrid, “Self-service, Prorated Super Computing Fun!” 1 November 2007, http://open.blogs
nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.
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the industry, and this fact is reflected in the number of products that use or incorporate
Hadoop in some way. There are Hadoop distributions from the large, established en-
terprise vendors, including EMC, IBM, Microsoft, and Oracle, as well as from specialist
Hadoop companies such as Cloudera, Hortonworks, and MapR.

Hadoop at Yahoo!

Building Internet-scale search engines requires huge amounts of data and therefore
large numbers of machines to process it. Yahoo! Search consists of four primary com-
ponents: the Crawler, which downloads pages from web servers; the WebMap, which
builds a graph of the known Web; the Indexer, which builds a reverse index to the best
pages; and the Runtime, which answers users’ queries. The WebMap is a graph that
consists of roughly 1 trillion (10'2) edges, each representing a web link, and 100 billion
(10'Y) nodes, each representing distinct URLs. Creating and analyzing such a large
graph requires a large number of computers running for many days. In early 2005, the
infrastructure for the WebMap, named Dreadnaught, needed to be redesigned to scale
up to more nodes. Dreadnaught had successfully scaled from 20 to 600 nodes, but
required a complete redesign to scale out further. Dreadnaught is similar to MapReduce
in many ways, but provides more flexibility and less structure. In particular, each frag-
ment in a Dreadnaught job can send output to each of the fragments in the next stage
of the job, but the sort was all done in library code. In practice, most of the WebMap
phases were pairs that corresponded to MapReduce. Therefore, the WebMap applica-
tions would not require extensive refactoring to fit into MapReduce.

Eric Baldeschwieler (Eric14) created a small team and we started designing and
prototyping a new framework written in C++ modeled after GFS and MapReduce to
replace Dreadnaught. Although the immediate need was for a new framework for
WebMap, it was clear that standardization of the batch platform across Yahoo! Search
was critical and by making the framework general enough to support other users, we
could better leverage investment in the new platform.

At the same time, we were watching Hadoop, which was part of Nutch, and its progress.
In January 2006, Yahoo! hired Doug Cutting, and a month later we decided to abandon
our prototype and adopt Hadoop. The advantage of Hadoop over our prototype and
design was that it was already working with a real application (Nutch) on 20 nodes.
That allowed us to bring up a research cluster two months later and start helping real
customers use the new framework much sooner than we could have otherwise. Another
advantage, of course, was that since Hadoop was already open source, it was easier
(although far from easy!) to get permission from Yahoo!’s legal department to work in
open source. So we set up a 200-node cluster for the researchers in early 2006 and put
the WebMap conversion plans on hold while we supported and improved Hadoop for
the research users.

Here’s a quick timeline of how things have progressed:

* 2004: Initial versions of what is now Hadoop Distributed Filesystem and MapRe-
duce implemented by Doug Cutting and Mike Cafarella.
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e December 2005: Nutch ported to the new framework. Hadoop runs reliably on 20
nodes.

e January 2006: Doug Cutting joins Yahoo!.

* February 2006: Apache Hadoop project officially started to support the standalone
development of MapReduce and HDFS.

* February 2006: Adoption of Hadoop by Yahoo! Grid team.
* April 2006: Sort benchmark (10 GB/node) run on 188 nodes in 47.9 hours.
* May 2006: Yahoo! set up a Hadoop research cluster—300 nodes.

* May 2006: Sort benchmark run on 500 nodes in 42 hours (better hardware than
April benchmark).

¢ QOctober 2006: Research cluster reaches 600 nodes.

¢ December 2006: Sort benchmark run on 20 nodes in 1.8 hours, 100 nodes in 3.3
hours, 500 nodes in 5.2 hours, 900 nodes in 7.8 hours.

* January 2007: Research cluster reaches 900 nodes.

e April 2007: Research clusters—two clusters of 1000 nodes.

* April 2008: Won the 1-terabyte sort benchmark in 209 seconds on 900 nodes.

* October 2008: Loading 10 terabytes of data per day onto research clusters.

e March 2009: 17 clusters with a total of 24,000 nodes.

* April 2009: Won the minute sort by sorting 500 GB in 59 seconds (on 1,400 nodes)
and the 100-terabyte sort in 173 minutes (on 3,400 nodes).

—Owen O’Malley

Apache Hadoop and the Hadoop Ecosystem

Although Hadoop is best known for MapReduce and its distributed filesystem (HDFS,
renamed from NDFS), the term is also used for a family of related projects that fall
under the umbrella of infrastructure for distributed computing and large-scale data
processing.

All of the core projects covered in this book are hosted by the Apache Software Foun-
dation, which provides support for a community of open source software projects,
including the original HTTP Server from which it gets its name. As the Hadoop eco-
system grows, more projects are appearing, not necessarily hosted at Apache, that pro-
vide complementary services to Hadoop or build on the core to add higher-level ab-
stractions.

The Hadoop projects that are covered in this book are described briefly here:

Common
A set of components and interfaces for distributed filesystems and general /0
(serialization, Java RPC, persistent data structures).
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Avro
A serialization system for efficient, cross-language RPC and persistent data
storage.

MapReduce
A distributed data processing model and execution environment that runs on large
clusters of commodity machines.

HDEFS
A distributed filesystem that runs on large clusters of commodity machines.

Pig
A data flow language and execution environment for exploring very large datasets.
Pig runs on HDFS and MapReduce clusters.

Hive
A distributed data warehouse. Hive manages data stored in HDFS and provides a
query language based on SQL (and which is translated by the runtime engine to
MapReduce jobs) for querying the data.

HBase
A distributed, column-oriented database. HBase uses HDFS for its underlying
storage, and supports both batch-style computations using MapReduce and point
queries (random reads).

ZooKeeper
A distributed, highly available coordination service. ZooKeeper provides primitives
such as distributed locks that can be used for building distributed applications.
Sqoop
A tool for efficient bulk transfer of data between structured data stores (such as
relational databases) and HDFS.

Oozie
A service for running and scheduling workflows of Hadoop jobs (including Map-
Reduce, Pig, Hive, and Sqoop jobs).

Hadoop Releases

Which version of Hadoop should you use? The answer to this question changes over
time, of course, and also depends on the features that you need. “Hadoop Relea-
ses” on page 13 summarizes the high-level features in recent Hadoop release series.

There are a few active release series. The 1.x release series is a continuation of the 0.20
release series and contains the most stable versions of Hadoop currently available. This
series includes secure Kerberos authentication, which prevents unauthorized access to
Hadoop data (see “Security” on page 325). Almost all production clusters use these
releases or derived versions (such as commercial distributions).
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The 0.22 and 2.x release series!® are not currently stable (as of early 2012), but this is
likely to change by the time you read this as they undergo more real-world testing
(consult the Apache Hadoop releases page for the latest status). 2.x includes several
major new features:

* A new MapReduce runtime, called MapReduce 2, implemented on a new system
called YARN (Yet Another Resource Negotiator), which is a general resource man-
agement system for running distributed applications. MapReduce 2 replaces the
“classic” runtime in previous releases. It is described in more depth in “YARN
(MapReduce 2)” on page 196.

* HDFS federation, which partitions the HDFS namespace across
multiple namenodes to support clusters with very large numbers of files. See
“HDFS Federation” on page 47.

* HDFS high-availability, which removes the namenode as a single point of failure
by supporting standby namenodes for failover. See “HDFS High-Availabil-
ity” on page 48.

Table 1-2. Features supported by Hadoop release series

Feature 1.x 0.22 2x
Secure authentication Yes No Yes
0ld configuration names Yes Deprecated  Deprecated
New configuration names No Yes Yes
0ld MapReduce API Yes Yes Yes
New MapReduce API Yes (with some Yes Yes
missing libraries)
MapReduce 1 runtime (Classic) ~ Yes Yes No
MapReduce 2 runtime (YARN) ~ No No Yes
HDFS federation No No Yes
HDFS high-availability No No Yes

Table 1-2 only covers features in HDFS and MapReduce. Other projects in the Hadoop
ecosystem are continually evolving too, and picking a combination of components that
work well together can be a challenge. Thankfully, you don’t have to do this work
yourself. The Apache Bigtop project (http://incubator.apache.org/bigtop/) runs intero-
perability tests on stacks of Hadoop components and provides Linux packages (RPMs
and Debian packages) for easy installation. There are also commercial vendors offering
Hadoop distributions containing suites of compatible components.

16. As this book went to press, the Hadoop community voted for the 0.23 release series to be renamed as the
2.x release series. This book uses the shorthand “releases after 1.x” to refer to releases in the 0.22 and 2.x
(formerly 0.23) series.
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What's Covered in This Book

This book covers all the releases in Table 1-2. In the cases where a feature is available
only in a particular release, it is noted in the text.

The code in this book is written to work against all these release series, exceptin a small
number of cases, which are called out explicitly. The example code available on the
website has a list of the versions that it was tested against.

Configuration names

Configuration property names have been changed in the releases after 1.x, in order to
give them a more regular naming structure. For example, the HDFS properties per-
taining to the namenode have been changed to have a dfs.namenode prefix, so
dfs.name.dir has changed to dfs.namenode.name.dir. Similarly, MapReduce properties
have the mapreduce prefix, rather than the older mapred prefix, so mapred.job.name has
changed to mapreduce. job.name.

For properties that exist in version 1.x, the old (deprecated) names are used in this book
because they will work in all the versions of Hadoop listed here. If you are using a release
after 1.x, you may wish to use the new property names in your configuration files and
code to remove deprecation warnings. A table listing the deprecated properties names
and their replacements can be found on the Hadoop website at http://hadoop.apache
.org/common/docs/r0.23.0/hadoop-project-dist/hadoop-common/DeprecatedProperties
html.

MapReduce APIs

Hadoop provides two Java MapReduce APIs, described in more detail in “The old and
the new Java MapReduce APIs” on page 27. This edition of the book uses the new
APT for the examples, which will work with all versions listed here, except in a few cases
where a MapReduce library using new API is not available in the 1.x releases. All the
examples in this book are available in the old API version (in the oldapi package) from
the book’s website.

Where there are material differences between the two APIs, they are discussed in the
text.

Compatibility

When moving from one release to another, you need to consider the upgrade steps that
are needed. There are several aspects to consider: API compatibility, data compatibility,
and wire compatibility.

APT compatibility concerns the contract between user code and the published Hadoop
APIs, such as the Java MapReduce APIs. Major releases (e.g., from 1.x.y to 2.0.0) are
allowed to break API compatibility, so user programs may need to be modified and
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recompiled. Minor releases (e.g., from 1.0.x to 1.1.0) and point releases (e.g., from
1.0.1 to 1.0.2) should not break compatibility.17

W

Hadoop uses a classification scheme for API elements to denote their
stability. The preceding rules for API compatibility cover those elements
%l that are marked InterfaceStability.Stable. Some elements of the pub-
lic Hadoop APIs, however, are marked with the InterfaceStabil
ity.Evolving or InterfaceStability.Unstable annotations (all these an-
notations are in the org.apache. hadoop . classification package), which
mean they are allowed to break compatibility on minor and point re-
leases, respectively.

Data compatibility concerns persistent data and metadata formats, such as the format
in which the HDFS namenode stores its persistent data. The formats can change across
minor or major releases, but the change is transparent to users because the upgrade
will automatically migrate the data. There may be some restrictions about upgrade
paths, and these are covered in the release notes. For example, it may be necessary to
upgrade via an intermediate release rather than upgrading directly to the later final
release in one step. Hadoop upgrades are discussed in more detail in “Up-
grades” on page 362.

Wire compatibility concerns the interoperability between clients and servers via wire
protocols such as RPC and HTTP. There are two types of client: external clients (run
by users) and internal clients (run on the cluster as a part of the system, e.g., datanode
and tasktracker daemons). In general, internal clients have to be upgraded in lockstep;
an older version of a tasktracker will not work with a newer jobtracker, for example.
In the future, rolling upgrades may be supported, which would allow cluster daemons
to be upgraded in phases, so that the cluster would still be available to external clients
during the upgrade.

For external clients that are run by the user—such as a program that reads or writes
from HDFS, or the MapReduce job submission client—the client must have the same
major release number as the server, but is allowed to have a lower minor or point release
number (e.g., client version 1.0.1 will work with server 1.0.2 or 1.1.0, but not with
server 2.0.0). Any exception to this rule should be called out in the release notes.

17. Pre-1.0 releases follow the rules for major releases, so a change in version from, say, 0.1.0 to 0.2.0
constitutes a major release, and therefore may break API compatibility.
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CHAPTER 2
MapReduce

MapReduce is a programming model for data processing. The model is simple, yet not
too simple to express useful programs in. Hadoop can run MapReduce programs writ-
ten in various languages; in this chapter, we look at the same program expressed in
Java, Ruby, Python, and C++. Most important, MapReduce programs are inherently
parallel, thus putting very large-scale data analysis into the hands of anyone with
enough machines at her disposal. MapReduce comes into its own for large datasets, so
let’s start by looking at one.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors
collect data every hour at many locations across the globe and gather a large volume of
log data, which is a good candidate for analysis with MapReduce because it is semi-
structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center (NCDC, http://www
.ncde.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each
line is a record. The format supports a rich set of meteorological elements, many of
which are optional or with variable data lengths. For simplicity, we focus on the basic
elements, such as temperature, which are always present and are of fixed width.

Example 2-1 shows a sample line with some of the salient fields highlighted. The line
has been split into multiple lines to show each field; in the real file, fields are packed
into one line with no delimiters.

17
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Example 2-1. Format of a National Climate Data Center record

0057
332130
99999
19500101
0300

4
+51317
+028783
FM-12
+0171
99999
V020
320

1

N

0072

1
00450
1

C

N
010000
1

N

9
-0128
1
-0139
1
10268
1

Datafiles are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

HoH H R

#

#

o o oH O B

USAF weather station identifier
WBAN weather station identifier
observation date
observation time

latitude (degrees x 1000)
longitude (degrees x 1000)

elevation (meters)

wind direction (degrees)
quality code

sky ceiling height (meters)
quality code

visibility distance (meters)
quality code

air temperature (degrees Celsius x 10)
quality code

dew point temperature (degrees Celsius x 10)
quality code

atmospheric pressure (hectopascals x 10)
quality code

% 1s raw/1990 | head
010010-99999-1990. g2
010014-99999-1990. gz
010015-99999-1990. gz
010016-99999-1990. g2
010017-99999-1990. gz
010030-99999-1990. g2
010040-99999-1990. g2
010080-99999-1990. g2
010100-99999-1990. g2
010150-99999-1990. g2

Since there are tens of thousands of weather stations, the whole dataset is made up of
alarge number of relatively small files. It’s generally easier and more efficient to process
a smaller number of relatively large files, so the data was preprocessed so that each
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year’s readings were concatenated into a single file. (The means by which this was
carried out is described in Appendix C.)

Analyzing the Data with Unix Tools

What's the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline and a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script
to calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

#!/usr/bin/env bash
for year in all/*
do
echo -ne “basename $year .gz "\t"
gunzip -c $year | \
awk '{ temp = substr($o, 88, 5) + 0;
q = substr($0, 93, 1);
if (temp !=9999 & q ~ /[01459]/ &3 temp > max) max = temp }
END { print max }'
done

The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer
by adding 0. Next, a test is applied to see whether the temperature is valid (the value
9999 signifies a missing value in the NCDC dataset) and whether the quality code
indicates that the reading is not suspect or erroneous. If the reading is OK, the value is
compared with the maximum value seen so far, which is updated if a new maximum
is found. The END block is executed after all the lines in the file have been processed,
and it prints the maximum value.

Here is the beginning of a run:

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256

1905 283

The temperature values in the source file are scaled by a factor of 10, so this works out
as a maximum temperature of 31.7°C for 1901 (there were very few readings at the
beginning of the century, so this is plausible). The complete run for the century took
42 minutes in one run on a single EC2 High-CPU Extra Large Instance.
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To speed up the processing, we need to run parts of the program in parallel. In theory,
this is straightforward: we could process different years in different processes, using all
the available hardware threads on a machine. There are a few problems with this,
however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case,
the file size for different years varies widely, so some processes will finish much earlier
than others. Even if they pick up further work, the whole run is dominated by the
longest file. A better approach, although one that requires more work, is to split the
input into fixed-size chunks and assign each chunk to a process.

Second, combining the results from independent processes may need further process-
ing. In this case, the result for each year is independent of other years and may be
combined by concatenating all the results and sorting by year. If using the fixed-size
chunk approach, the combination is more delicate. For this example, data for a par-
ticular year will typically be split into several chunks, each processed independently.
We'll end up with the maximum temperature for each chunk, so the final step is to
look for the highest of these maximums for each year.

Third, you are still limited by the processing capacity of a single machine. If the best
time you can achieve is 20 minutes with the number of processors you have, then that’s
it. You can’t make it go faster. Also, some datasets grow beyond the capacity of a single
machine. When we start using multiple machines, a whole host of other factors come
into play, mainly falling into the category of coordination and reliability. Who runs the
overall job? How do we deal with failed processes?

So, although it’s feasible to parallelize the processing, in practice it’s messy. Using a
framework like Hadoop to take care of these issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express
our query as a MapReduce job. After some local, small-scale testing, we will be able to
run it on a cluster of machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the
reduce phase. Each phase has key-value pairs as input and output, the types of which
may be chosen by the programmer. The programmer also specifies two functions: the
map function and the reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that
gives us each line in the dataset as a text value. The key is the offset of the beginning
of the line from the beginning of the file, but as we have no need for this, we ignore it.
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Our map function is simple. We pull out the year and the air temperature because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, Or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004. . . 9999999N9+00001+99999999999. . .
0043011990999991950051512004. . . 9999999N9+00221+99999999999. . .
0043011990999991950051518004. . . 9999999N9-00111+99999999999. . .
0043012650999991949032412004. . . 0500001N9+01111+99999999999. . .
0043012650999991949032418004. . . 0500001N9+00781+99999999999. . .

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004. . .9999999N9+00001+99999999999. . .)

(106, 0043011990999991950051512004. ..9999999N9+00221+99999999999. . .
(212, 0043011990999991950051518004. ..9999999N9-00111+99999999999. . .
(318, 0043012650999991949032412004. . .0500001N9+01111+99999999999. . .
(424, 0043012650999991949032418004. . .0500001N9+00781+99999999999. . .

~—

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:
(1949, [111, 78])
(1950, [0, 22, -11])
Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later
in this chapter when we look at Hadoop Streaming.
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input | map | shuffle | reduce > output

0067011990 1 0,0067011990...) (1950, 0)
0043011990.. (106, 0043011990...) (1950, 22)
0043011990..}--p| (212, 0043011990...) f---p] (1950,-11) |- ﬂggg'm“;;ﬂ?]ﬁ =2 ﬂggg’g;)] :g’;y
0043012650.. (318, 0043012650...) (1949,111) Ao ' ’
0043012650., (424, 0043012650...) (1949, 78)

cat * | map.rb | sort | reduce.rb - output

Figure 2-1. MapReduce logical data flow

Java MapReduce

Having run through how the MapReduce program works, the next step is to express it
in code. We need three things: a map function, a reduce function, and some code to
run the job. The map function is represented by the Mapper class, which declares an
abstract map() method. Example 2-3 shows the implementation of our map method.

Example 2-3. Mapper for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Llonghiritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

@verride
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING &3 quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));

}

}
}

The Mapper class is a generic type, with four formal type parameters that specify the
input key, input value, output key, and output value types of the map function. For the
present example, the input key is a long integer offset, the input value is a line of text,
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the output key is a year, and the output value is an air temperature (an integer). Rather
than use built-in Java types, Hadoop provides its own set of basic types that are opti-
mized for network serialization. These are found in the org.apache.hadoop.io package.
Here we use LongWritable, which corresponds to a Java Long, Text (like Java String),
and IntWritable (like Java Integer).

The map() method is passed a key and a value. We convert the Text value containing
the line of input into a Java String, then use its substring() method to extract the
columns we are interested in.

The map() method also provides an instance of Context to write the output to. In this
case, we write the year as a Text object (since we are just using it as a key), and the
temperature is wrapped in an IntWritable. We write an output record only if the tem-
perature is present and the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

@0verride

public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}
}

Again, four formal type parameters are used to specify the input and output types, this
time for the reduce function. The input types of the reduce function must match the
output types of the map function: Text and IntWritable. And in this case, the output
types of the reduce function are Text and IntWritable, for a year and its maximum
temperature, which we find by iterating through the temperatures and comparing each
with a record of the highest found so far.

The third piece of code runs the MapReduce job (see Example 2-5).
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Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[o]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(InthWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

A Job object forms the specification of the job and gives you control over how the job
is run. When we run this job on a Hadoop cluster, we will package the code into a JAR
file (which Hadoop will distribute around the cluster). Rather than explicitly specify
the name of the JAR file, we can pass a class in the Job’s setJarByClass () method, which
Hadoop will use to locate the relevant JAR file by looking for the JAR file containing
this class.

Having constructed a Job object, we specify the input and output paths. An input path
is specified by calling the static addInputPath() method on FileInputFormat, and it can
be a single file, a directory (in which case the input forms all the files in that directory),
or a file pattern. As the name suggests, addInputPath() can be called more than once
to use input from multiple paths.

The output path (of which there is only one) is specified by the static setOutput
Path() method on FileOutputFormat. It specifies a directory where the output files from
the reducer functions are written. The directory shouldn’t exist before running the job
because Hadoop will complain and not run the job. This precaution is to prevent data
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loss (it can be very annoying to accidentally overwrite the output of a long job with
another).

Next, we specify the map and reduce types to use via the setMapperClass() and
setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control the output types
for the map and the reduce functions, which are often the same, as they are in our case.
If they are different, the map output types can be set using the methods
setMapOutputKeyClass() and setMapOutputValueClass().

The input types are controlled via the input format, which we have not explicitly set
because we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run
the job. The waitForCompletion() method on Job submits the job and waits for it to
finish. The method’s Boolean argument is a verbose flag, so in this case the job writes
information about its progress to the console.

The return value of the waitForCompletion() method is a Boolean indicating success
(true) or failure (false), which we translate into the program’s exit code of 0 or 1.

Atestrun

After writing a MapReduce job, it’s normal to try it out on a small dataset to flush out
any immediate problems with the code. First, install Hadoop in standalone mode—
there are instructions for how to do this in Appendix A. This is the mode in which
Hadoop runs using the local filesystem with a local job runner. Then, install and com-
pile the examples using the instructions on the book’s website.

Let’s test it on the five-line sample discussed earlier (the output has been slightly re-
formatted to fit the page):

% export HADOOP_CLASSPATH=hadoop-examples.jar

% hadoop MaxTemperature input/ncdc/sample.txt output

12/02/04 11:50:41 WARN util.NativeCodeloader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable

12/02/04 11:50:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.

12/02/04 11:50:41 INFO input.FileInputFormat: Total input paths to process : 1
12/02/04 11:50:41 INFO mapred.JobClient: Running job: job local 0001

12/02/04 11:50:41 INFO mapred.Task: Using ResourceCalculatorPlugin : null
12/02/04 11:50:41 INFO mapred.MapTask: io.sort.mb = 100

12/02/04 11:50:42 INFO mapred.MapTask: data buffer = 79691776/99614720

12/02/04 11:50:42 INFO mapred.MapTask: record buffer = 262144/327680

12/02/04 11:50:42 INFO mapred.MapTask: Starting flush of map output

12/02/04 11:50:42 INFO mapred.MapTask: Finished spill o

12/02/04 11:50:42 INFO mapred.Task: Task:attempt local 0001 m_000000 0 is done. And i
s in the process of commiting

12/02/04 11:50:42 INFO mapred.JobClient: map 0% reduce 0%

12/02/04 11:50:44 INFO mapred.LocalJobRunner:

12/02/04 11:50:44 INFO mapred.Task: Task 'attempt local 0001 m 000000 0' done.
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12/02/04 11:50:44 INFO mapred.Task: Using ResourceCalculatorPlugin : null

12/02/04 11:50:44 INFO mapred.LocallobRunner:

12/02/04 11:50:44 INFO mapred.Merger: Merging 1 sorted segments

12/02/04 11:50:44 INFO mapred.Merger: Down to the last merge-pass, with 1 segments
left of total size: 57 bytes

12/02/04 11:50:44 INFO mapred.LocallobRunner:

12/02/04 11:50:45 INFO mapred.Task: Task:attempt local 0001 r 000000 0 is done. And
is in the process of commiting

12/02/04 11:50:45 INFO mapred.LocalJobRunner:

12/02/04 11:50:45 INFO mapred.Task: Task attempt local 0001 r 000000 0 is allowed to
commit now

12/02/04 11:50:45 INFO output.FileOutputCommitter: Saved output of task 'attempt_local
_0001_r_ 000000 0' to output

12/02/04 11:50:45 INFO mapred.JobClient: map 100% reduce 0%

12/02/04 11:50:47 INFO mapred.LocalJobRunner: reduce > reduce

12/02/04 11:50:47 INFO mapred.Task: Task 'attempt local 0001 r 000000 0' done.
12/02/04 11:50:48 INFO mapred.JobClient: map 100% reduce 100%

12/02/04 11:50:48 INFO mapred.JobClient: Job complete: job local 0001

12/02/04 11:50:48 INFO mapred.JobClient: Counters: 17

12/02/04 11:50:48 INFO mapred.JobClient: File Output Format Counters

12/02/04 11:50:48 INFO mapred.JobClient: Bytes Written=29

12/02/04 11:50:48 INFO mapred.JobClient:  FileSystemCounters

12/02/04 11:50:48 INFO mapred.JobClient: FILE_BYTES READ=357503
12/02/04 11:50:48 INFO mapred.JobClient: FILE BYTES WRITTEN=425817
12/02/04 11:50:48 INFO mapred.JobClient: File Input Format Counters
12/02/04 11:50:48 INFO mapred.JobClient: Bytes Read=529

12/02/04 11:50:48 INFO mapred.JobClient:  Map-Reduce Framework
12/02/04 11:50:48 INFO mapred.JobClient: Map output materialized bytes=61
12/02/04 11:50:48 INFO mapred.JobClient: Map input records=5
12/02/04 11:50:48 INFO mapred.JobClient: Reduce shuffle bytes=0
12/02/04 11:50:48 INFO mapred.JobClient: Spilled Records=10
12/02/04 11:50:48 INFO mapred.JobClient: Map output bytes=45
12/02/04 11:50:48 INFO mapred.JobClient: Total committed heap usage (bytes)=36923
8016

12/02/04 11:50:48 INFO mapred.JobClient: SPLIT RAW_BYTES=129
12/02/04 11:50:48 INFO mapred.JobClient: Combine input records=0
12/02/04 11:50:48 INFO mapred.JobClient: Reduce input records=5
12/02/04 11:50:48 INFO mapred.JobClient: Reduce input groups=2
12/02/04 11:50:48 INFO mapred.JobClient: Combine output records=0
12/02/04 11:50:48 INFO mapred.JobClient: Reduce output records=2
12/02/04 11:50:48 INFO mapred.JobClient: Map output records=5

When the hadoop command is invoked with a classname as the first argument, it
launches a Java Virtual Machine (JVM) to run the class. It is more convenient to use
hadoop than straight java because the former adds the Hadoop libraries (and their de-
pendencies) to the classpath and picks up the Hadoop configuration, too. To add the
application classes to the classpath, we’ve defined an environment variable called
HADOOP_CLASSPATH, which the hadoop script picks up.

When running in local (standalone) mode, the programs in this book
all assume that you have set the HADOOP_CLASSPATH in this way. The com-
%5 mands should be run from the directory that the example code is
installed in.
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The output from running the job provides some useful information. For example,
we can see that the job was given an ID of job_local 0001, and it ran one map task
and one reduce task (with the IDs attempt local 0001 _m 000000 0 and
attempt local 0001 r 000000 0). Knowing thejoband task IDs can be very useful when
debugging MapReduce jobs.

The last section of the output, titled “Counters,” shows the statistics that Hadoop
generates for each job it runs. These are very useful for checking whether the amount
of data processed is what you expected. For example, we can follow the number of
records that went through the system: five map inputs produced five map outputs, then
five reduce inputs in two groups produced two reduce outputs.

The output was written to the output directory, which contains one output file per
reducer. The job had a single reducer, so we find a single file, named part-r-00000:
% cat output/part-r-00000

1949 111
1950 22

This result is the same as when we went through it by hand earlier. We interpret this
as saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it
was 2.2°C.

The old and the new Java MapReduce APIs

The Java MapReduce API used in the previous section was first released in Hadoop
0.20.0. This new API, sometimes referred to as “Context Objects,” was designed to
make the API easier to evolve in the future. It is type-incompatible with the old, how-
ever, so applications need to be rewritten to take advantage of it.

The new APIis largely complete in the latest 1.x release series (which is a continuation
of the 0.20 series), except for a few MapReduce libraries that are missing (check in the
latest release to see whether the library you want to use is available in a subpackage of
org.apache.hadoop.mapreduce.1ib).

Previous editions of this book were based on 0.20 releases and used the old API
throughout. In this edition, the new API is used as the primary API, except in a few
places. However, should you wish to use the old API, you can, since the code for all
the examples in this book is available for the old API on the book’s website. (A few of
the early 0.20 releases deprecated the old API, but the deprecation was removed in later
releases, so that all 1.x and 2.x releases now support both the old and new APIs without
causing deprecation warnings.)

There are several notable differences between the two APIs:

¢ The new API favors abstract classes over interfaces, since these are easier to evolve.
This means that you can add a method (with a default implementation) to an
abstract class without breaking old implementations of the class.! For example,
the Mapper and Reducer interfaces in the old API are abstract classes in the new APIL.
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The new API is in the org.apache.hadoop.mapreduce package (and subpackages).
The old API can still be found in org.apache.hadoop.mapred.

The new API makes extensive use of context objects that allow the user code to
communicate with the MapReduce system. The new Context, for example, essen-
tially unifies the role of the JobConf, the OutputCollector, and the Reporter from
the old API.

In both APIs, key-value record pairs are pushed to the mapper and reducer, but in
addition, the new API allows both mappers and reducers to control the execution
flow by overriding the run() method. For example, records can be processed in
batches, or the execution can be terminated before all the records have been pro-
cessed. In the old API this is possible for mappers by writing a MapRunnable, but no
equivalent exists for reducers.

Job control is performed through the Job class in the new API, rather than the old
JobClient, which no longer exists in the new API.

Configuration has been unified. The old API has a special JobConf object for job
configuration, which is an extension of Hadoop’s vanilla Configuration object
(used for configuring daemons; see “The Configuration API” on page 144). In the
new API, job configuration is done through a Configuration, possibly via some of
the helper methods on Job.

Output files are named slightly differently: in the old API both map and reduce
outputs are named part-nnnnn, whereas in the new API map outputs are named
part-m-nnnnn, and reduce outputs are named part-r-nnnnn (where nnnnn is an integer
designating the part number, starting from zero).

User-overridable methods in the new API are declared to throw java.lang.Inter
ruptedException. This means that you can write your code to be responsive to
interrupts so that the framework can gracefully cancel long-running operations if
it needs to.2

In the new API, the reduce() method passes values as a java.lang.Iterable, rather
than a java.lang.Iterator (as the old API does). This change makes it easier to
iterate over the values using Java’s for-each loop construct:

for (VALUEIN value : values) { ... }

Example 2-6 shows the MaxTemperature application rewritten to use the old API. The
differences are highlighted in bold.

2.

. Technically, such a change would almost certainly break implementations that already define a method

with the same signature as the new one, but as the article at http://wiki.eclipse.org/Evolving_Java-based
_APIs#Example_4_-_Adding_an_API_method explains, for all practical purposes this is treated as a

compatible change.

“Dealing with InterruptedException” by Brian Goetz explains this technique in detail.
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When converting your Mapper and Reducer classes to the new API, don’t
:‘é% forget to change the signature of the map() and reduce() methods to the

new form. Just changing your class to extend the new Mapper or
Reducer classes will not produce a compilation error or warning, because
these classes provide an identity form of the map() or reduce() method

(respectively). Your mapper or reducer code, however, will not be in-
voked, which can lead to some hard-to-diagnose errors.

Annotating your map() and reduce() methods with the @verride an-
notation will allow the Java compiler to catch these errors.

Example 2-6. Application to find the maximum temperature, using the old MapReduce API
public class OldMaxTemperature {

static class OldMaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

@0verride

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);
if (airTemperature != MISSING &3 quality.matches("[01459]")) {
output.collect(new Text(year), new IntWritable(airTemperature));

}
}

static class OldMaxTemperatureReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

@0verride

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());

output.collect(key, new IntWritable(maxValue));
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}

public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: OldMaxTemperature <input path> <output path>");
System.exit(-1);

}

JobConf conf = new JobConf(OldMaxTemperature.class);
conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf. setMapperClass(0ldMaxTemperatureMapper.class);
conf.setReducerClass(0ldMaxTemperatureReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

Scaling Out

You’ve seen how MapReduce works for small inputs; now it’s time to take a bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity, the
examples so far have used files on the local filesystem. However, to scale out, we need
to store the data in a distributed filesystem, typically HDFS (which you’ll learn about
in the next chapter), to allow Hadoop to move the MapReduce computation to each
machine hosting a part of the data. Let’s see how this works.

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks.

There are two types of nodes that control the job execution process: a jobtracker and
a number of tasktrackers. The jobtracker coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress
reports to the jobtracker, which keeps a record of the overall progress of each job. If a
task fails, the jobtracker can reschedule it on a different tasktracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input
splits, or just splits. Hadoop creates one map task for each split, which runs the user-
defined map function for each record in the split.
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Having many splits means the time taken to process each split is small compared to the
time to process the whole input. So if we are processing the splits in parallel, the pro-
cessing is better load-balanced when the splits are small, since a faster machine will be
able to process proportionally more splits over the course of the job than a slower
machine. Even if the machines are identical, failed processes or other jobs running
concurrently make load balancing desirable, and the quality of the load balancing in-
creases as the splits become more fine-grained.

On the other hand, if splits are too small, the overhead of managing the splits and of
map task creation begins to dominate the total job execution time. For most jobs, a
good split size tends to be the size of an HDFS block, 64 MB by default, although this
can be changed for the cluster (for all newly created files) or specified when each file is
created.

Hadoop does its best to run the map task on a node where the input data resides in
HDFS. This is called the data locality optimization because it doesn’t use valuable clus-
ter bandwidth. Sometimes, however, all three nodes hosting the HDFS block replicas
for a map task’s input split are running other map tasks, so the job scheduler will look
for a free map slot on a node in the same rack as one of the blocks. Very occasionally
even this is not possible, so an off-rack node is used, which results in an inter-rack
network transfer. The three possibilities are illustrated in Figure 2-2.

node
O« b %
rack
[——1Map task
[ HOFS block data center

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

It should now be clear why the optimal split size is the same as the block size: it is the
largest size of input that can be guaranteed to be stored on a single node. If the split
spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so
some of the split would have to be transferred across the network to the node running
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the map task, which is clearly less efficient than running the whole map task using local
data.

Map tasks write their output to the local disk, not to HDFS. Why is this? Map output
is intermediate output: it’s processed by reduce tasks to produce the final output, and
once the job is complete, the map output can be thrown away. So storing it in HDFS
with replication would be overkill. If the node running the map task fails before the
map output has been consumed by the reduce task, then Hadoop will automatically
rerun the map task on another node to re-create the map output.

Reduce tasks don’t have the advantage of data locality; the input to a single reduce task
is normally the output from all mappers. In the present example, we have a single reduce
task that is fed by all of the map tasks. Therefore, the sorted map outputs have to be
transferred across the network to the node where the reduce task is running, where
they are merged and then passed to the user-defined reduce function. The output of
the reduce is normally stored in HDFS for reliability. As explained in Chapter 3, for
each HDFS block of the reduce output, the first replica is stored on the local node, with
other replicas being stored on off-rack nodes. Thus, writing the reduce output does
consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted
boxes indicate nodes, the light arrows show data transfers on a node, and the heavy
arrows show data transfers between nodes.

» HDFS
replication

Figure 2-3. MapReduce data flow with a single reduce task
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The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

-pi part0 E——p HDFS
& replication

part P HDFS
replication

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLinelnputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner
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function’s output forms the input to the reduce function. Because the combiner func-
tion is an optimization, Hadoop does not provide a guarantee of how many times it
will call it for a particular map output record, if at all. In other words, calling the
combiner function zero, one, or many times should produce the same output from the
reducer.

input output
HDFS HDFS

bl part0 P HDFS
' replication

» HDFS
replication

part2 P HDFS
replication

Figure 2-5. MapReduce data flow with no reduce tasks

The contract for the combiner function constrains the type of function that may be
used. This is best illustrated with an example. Suppose that for the maximum temper-
ature example, readings for the year 1950 were processed by two maps (because they
were in different splits). Imagine the first map produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

and the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])

with output:
(1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just
like the reduce function, finds the maximum temperature for each map output. The
reduce would then be called with:
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(1950, [20, 25])

and the reduce would produce the same output as before. More succinctly, we may
express the function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Not all functions possess this property.3 For example, if we were calculating mean
temperatures, we couldn’t use the mean as our combiner function, because:

mean(0, 20, 10, 25, 15) = 14

but:

mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. (How could it? The reduce
function is still needed to process records with the same key from different maps.) But
it can help cut down the amount of data shuffled between the mappers and the reducers,
and for this reason alone it is always worth considering whether you can use a combiner
function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using
the Reducer class, and for this application, it is the same implementation as the reducer
function in MaxTemperatureReducer. The only change we need to make is to set the
combiner class on the Job (see Example 2-7).

Example 2-7. Application to find the maximum temperature, using a combiner function for efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCombiner <input path>
"<output path>");
System.exit(-1);

+

Job job = new Job();
job.setJarByClass(MaxTemperatureWithCombiner.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[o]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

3. Functions with this property are called commutative and associative. They are also sometimes referred to
as distributive, such as in the paper “Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals,” Gray et al. (1995).
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job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of
MapReduce: it scales to the size of your data and the size of your hardware. Here’s one
data point: on a 10-node EC2 cluster running High-CPU Extra Large Instances, the
program took six minutes to run.4

We’ll go through the mechanics of running programs on a cluster in Chapter 5.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams
as the interface between Hadoop and your program, so you can use any language that
can read standard input and write to standard output to write your MapReduce
program.

Streaming is naturally suited for text processing. Map input data is passed over standard
input to your map function, which processes it line by line and writes lines to standard
output. A map output key-value pair is written as a single tab-delimited line. Input to
the reduce function is in the same format—a tab-separated key-value pair—passed over
standard input. The reduce function reads lines from standard input, which the frame-
work guarantees are sorted by key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding maximum tem-
peratures by year in Streaming.

Ruby

The map function can be expressed in Ruby as shown in Example 2-8.

Example 2-8. Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

4. This is a factor of seven faster than the serial run on one machine using awk. The main reason it wasn’t
proportionately faster is because the input data wasn’t evenly partitioned. For convenience, the input
files were gzipped by year, resulting in large files for later years in the dataset, when the number of weather
records was much higher.
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STDIN.each_line do |line|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year}\t#{temp}" if (temp != "+9999" 8& q =~ /[01459]/)
end

The program iterates over lines from standard input by executing a block for each line
from STDIN (a global constant of type 10). The block pulls out the relevant fields from
each input line, and, if the temperature is valid, writes the year and the temperature
separated by a tab character \t to standard output (using puts).

W N

It’s worth drawing out a design difference between Streaming and the
Java MapReduce API. The Java API is geared toward processing your
%5 map function one record at a time. The framework calls the map()
" method on your Mapper for each record in the input, whereas with
Streaming the map program can decide how to process the input—for
example, it could easily read and process multiple lines at a time since
it’s in control of the reading. The user’s Java map implementation is
“pushed” records, but it’s still possible to consider multiple lines at a
time by accumulating previous lines in an instance variable in the
Mapper.> In this case, you need to implement the close() method so that
you know when the last record has been read, so you can finish pro-
cessing the last group of lines.

Because the script just operates on standard input and output, it’s trivial to test the
script without using Hadoop, simply using Unix pipes:

% cat input/ncdc/sample.txt | ch02/src/main/ruby/max_temperature_map.rb

1950 +0000
1950 +0022
1950 -0011
1949 +0111
1949 +0078

The reduce function shown in Example 2-9 is a little more complex.

Example 2-9. Reduce function for maximum temperature in Ruby

#!/usr/bin/env ruby

last_key, max_val = nil, -1000000
STDIN.each line do |line|
key, val = line.split("\t")
if last key && last key != key
puts "#{last_key}\t#{max_val}"
last_key, max_val = key, val.to i
else
last_key, max_val = key, [max_val, val.to i].max

5. Alternatively, you could use “pull” style processing in the new MapReduce API; see “The
old and the new Java MapReduce APIs” on page 27.
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end
end
puts "#{last_key}\t#{max_val}" if last_key

Again, the program iterates over lines from standard input, but this time we have to
store some state as we process each key group. In this case, the keys are the years, and
we store the last key seen and the maximum temperature seen so far for that key. The
MapReduce framework ensures that the keys are ordered, so we know that if a key is
different from the previous one, we have moved into a new key group. In contrast to
the Java API, where you are provided an iterator over each key group, in Streaming you
have to find key group boundaries in your program.

For each line, we pull out the key and value. Then, if we’ve just finished a group
(last_key &3 last _key != key), we write the key and the maximum temperature for
that group, separated by a tab character, before resetting the maximum temperature
for the new key. If we haven’t just finished a group, we just update the maximum
temperature for the current key.

The last line of the program ensures that a line is written for the last key group in the
input.

We can now simulate the whole MapReduce pipeline with a Unix pipeline (which is
equivalent to the Unix pipeline shown in Figure 2-1):
% cat input/ncdc/sample.txt | ch02/src/main/ruby/max_temperature map.rb | \
sort | ch02/src/main/ruby/max_temperature_reduce.rb

1949 111
1950 22

The output is the same as the Java program, so the next step is to run it using Hadoop
itself.

The hadoop command doesn’t support a Streaming option; instead, you specify the
Streaming JAR file along with the jar option. Options to the Streaming program specify
the input and output paths and the map and reduce scripts. This is what it looks like:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
-input input/ncdc/sample.txt \
-output output \

-mapper ch02/src/main/ruby/max_temperature_map.rb \
-reducer ch02/src/main/ruby/max_temperature_reduce.rb

When running on a large dataset on a cluster, we should use the -combiner option to
set the combiner.

In releases after 1.x, the combiner can be any Streaming command. For earlier releases,
the combiner had to be written in Java, so as a workaround it was common to do manual
combining in the mapper without having to resort to Java. In this case, we could change
the mapper to be a pipeline:

% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \

-input input/ncdc/all \
-output output \
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-mapper "cho2/src/main/ruby/max_temperature_map.rb | sort |
cho2/src/main/ruby/max_temperature_reduce.rb" \

-reducer cho2/src/main/ruby/max_temperature_reduce.rb \

-file cho2/src/main/ruby/max_temperature_map.rb \

-file cho2/src/main/ruby/max_temperature_reduce.rb

Note also the use of -file, which we use when running Streaming programs on the
cluster to ship the scripts to the cluster.

Python

Streaming supports any programming language that can read from standard input and
write to standard output, so for readers more familiar with Python, here’s the same
example again.® The map script is in Example 2-10, and the reduce script is in Exam-
ple 2-11.

Example 2-10. Map function for maximum temperature in Python

#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
val = line.strip()
(year, temp, q) = (val[15:19], val[87:92], val[92:93])
if (temp != "+9999" and re.match("[01459]", q)):
print "%s\t%s" % (year, temp)

Example 2-11. Reduce function for maximum temperature in Python

#!/usr/bin/env python
import sys

(last_key, max_val) = (None, -sys.maxint)
for line in sys.stdin:
(key, val) = line.strip().split("\t")
if last key and last key != key:
print "%s\t%s" % (last_key, max val)
(last_key, max_val) = (key, int(val))
else:
(last_key, max_val) = (key, max(max_val, int(val)))

if last key:
print "%s\t%s" % (last_key, max_val)

6. As an alternative to Streaming, Python programmers should consider Dumbo (http://www.last.fm/
dumbo), which makes the Streaming MapReduce interface more Pythonic and easier to use.
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We can test the programs and run the job in the same way we did in Ruby. For example,
to run a test:

% cat input/ncdc/sample.txt | cho2/src/main/python/max_temperature_map.py | \
sort | cho2/src/main/python/max_temperature_reduce.py

1949 111

1950 22

Hadoop Pipes

Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. Unlike Stream-
ing, which uses standard input and output to communicate with the map and reduce
code, Pipes uses sockets as the channel over which the tasktracker communicates with
the process running the C++ map or reduce function. JNT is not used.

We'll rewrite this chapter’s temperature example in C++, and then we’ll see how to
run it using Pipes. Example 2-12 shows the source code for the map and reduce func-
tions in C++.

Example 2-12. Maximum temperature in C++

#include <algorithm>
#include <limits>
#include <stdint.h>
#include <string>

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class MaxTemperatureMapper : public HadoopPipes::Mapper {
public:
MaxTemperatureMapper (HadoopPipes: :TaskContext& context) {

void map(HadoopPipes::MapContext& context) {
std::string line = context.getInputValue();
std::string year = line.substr(15, 4);
std::string airTemperature = line.substr(87, 5);
std::string q = line.substr(92, 1);
if (airTemperature != "+9999" &&

(q=="0" [l q=="1" || q=="4" || q = "5" || q = "9")) {
context.emit(year, airTemperature);

}

}

b

class MapTemperatureReducer : public HadoopPipes::Reducer {
public:
MapTemperatureReducer (HadoopPipes: : TaskContext8 context) {

void reduce(HadoopPipes: :ReduceContextd context) {
int maxValue = INT_MIN;
while (context.nextValue()) {
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maxValue = std::max(maxValue, HadoopUtils::toInt(context.getInputValue()));

}
context.emit(context.getInputKey(), HadoopUtils::toString(maxValue));

}
|5

int main(int argc, char *argv[]) {
return HadoopPipes::runTask(HadoopPipes::TemplateFactory<MaxTemperatureMapper,
MapTemperatureReducer>());
}

The application links against the Hadoop C++ library, which is a thin wrapper for
communicating with the tasktracker child process. The map and reduce functions are
defined by extending the Mapper and Reducer classes defined in the HadoopPipes name-
space and providing implementations of the map() and reduce() methods in each case.
These methods take a context object (of type MapContext or ReduceContext), which
provides the means for reading input and writing output, as well as accessing job con-
figuration information via the JobConf class. The processing in this example is very
similar to the Java equivalent.

Unlike the Java interface, keys and values in the C++ interface are byte buffers repre-
sented as Standard Template Library (STL) strings. This makes the interface simpler,
although it does put a slightly greater burden on the application developer, who has to
convert to and from richer domain-level types. This is evident in MapTempera
tureReducer, where we have to convert the input value into an integer (using a conve-
nience method in HadoopUtils) and then the maximum value back into a string before
it’s written out. In some cases, we can skip the conversion, such as in MaxTemperature
Mapper, where the airTemperature value is never converted to an integer because it is
never processed as a number in the map() method.

The main() method is the application entry point. It calls HadoopPipes: : runTask, which
connects to the Java parent process and marshals data to and from the Mapper or

Reducer. The runTask() method is passed a Factory so that it can create instances of the
Mapper or Reducer. Which one it creates is controlled by the Java parent over the socket
connection. There are overloaded template factory methods for setting a combiner,
partitioner, record reader, or record writer.

Compiling and Running
Now we can compile and link our program using the makefile in Example 2-13.

Example 2-13. Makefile for C++ MapReduce program

CC = g++
CPPFLAGS = -m32 -I$(HADOOP_INSTALL)/c++/$(PLATFORM)/include

max_temperature: max_temperature.cpp
$(CC) $(CPPFLAGS) $< -Wall -L$(HADOOP_INSTALL)/c++/$(PLATFORM)/1ib -lhadooppipes \
-lhadooputils -lpthread -g -02 -o $@
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The makefile expects a couple of environment variables to be set. Apart from
HADOOP_INSTALL (which you should already have set if you followed the installation
instructions in Appendix A), you need to define PLATFORM, which specifies the operating
system, architecture, and data model (e.g., 32- or 64-bit). I ran it on a 32-bit Linux
system with the following:

% export PLATFORM=Linux-1i386-32
% make

On successful completion, you’ll find the max_temperature executable in the current
directory.

To run a Pipes job, we need to run Hadoop in pseudodistributed mode (where all the
daemons run on the local machine), for which there are setup instructions in Appen-
dix A. Pipes doesn’t run in standalone (local) mode, because it relies on Hadoop’s
distributed cache mechanism, which works only when HDFS is running.

With the Hadoop daemons now running, the first step is to copy the executable to
HDFES so that it can be picked up by tasktrackers when they launch map and reduce
tasks:

% hadoop fs -put max_temperature bin/max_temperature

The sample data also needs to be copied from the local filesystem into HDFS:
% hadoop fs -put input/ncdc/sample.txt sample.txt

Now we can run the job. For this, we use the Hadoop pipes command, passing the
Uniform Resource Identifier (URI) of the executable in HDFS using the -program ar-
gument:
% hadoop pipes \

-D hadoop.pipes.java.recordreader=true \

-D hadoop.pipes.java.recordwriter=true \

-input sample.txt \

-output output \

-program bin/max_temperature

We specify two properties using the -D option: hadoop.pipes.java.recordreader and
hadoop.pipes.java.recordwriter, setting both to true to say that we have not specified
a C++ record reader or writer, but that we want to use the default Java ones (which are
for text input and output). Pipes also allows you to set a Java mapper, reducer,
combiner, or partitioner. In fact, you can have a mixture of Java or C++ classes within
any one job.

The result is the same as the other versions of the same program that we ran previously.
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CHAPTER 3
The Hadoop Distributed Filesystem

When a dataset outgrows the storage capacity of a single physical machine, it becomes
necessary to partition it across a number of separate machines. Filesystems that manage
the storage across a network of machines are called distributed filesystems. Since they
are network-based, all the complications of network programming kick in, thus making
distributed filesystems more complex than regular disk filesystems. For example, one
of the biggest challenges is making the filesystem tolerate node failure without suffering
data loss.

Hadoop comes with a distributed filesystem called HDFS, which stands for Hadoop
Distributed Filesystem. (You may sometimes see references to “DFS”—informally or in
older documentation or configurations—which is the same thing.) HDFS is Hadoop’s
flagship filesystem and is the focus of this chapter, but Hadoop actually has a general-
purpose filesystem abstraction, so we’ll see along the way how Hadoop integrates with
other storage systems (such as the local filesystem and Amazon S3).

The Design of HDFS

HDFS is a filesystem designed for storing very large files with streaming data access
patterns, running on clusters of commodity hardware.! Let’s examine this statement
in more detail:

Very large files
“Very large” in this context means files that are hundreds of megabytes, gigabytes,

or terabytes in size. There are Hadoop clusters running today that store petabytes
of data.2

1. The architecture of HDFS is described in “The Hadoop Distributed File System” by Konstantin Shvachko,
Hairong Kuang, Sanjay Radia, and Robert Chansler (Proceedings of MSST2010, May 2010, http://
storageconference.org/2010/Papers/MSST/Shvachko.pdf).

2. “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling
_hadoop_to_4000_nodes_a.html.
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Streaming data access
HDFS is built around the idea that the most efficient data processing pattern is a
write-once, read-many-times pattern. A dataset is typically generated or copied
from source, and then various analyses are performed on that dataset over time.
Each analysis will involve a large proportion, if not all, of the dataset, so the time
to read the whole dataset is more important than the latency in reading the first
record.

Commodity hardware
Hadoop doesn’t require expensive, highly reliable hardware. It’s designed to run
on clusters of commodity hardware (commonly available hardware that can be
obtained from multiple vendors)3 for which the chance of node failure across the
cluster is high, at least for large clusters. HDFS is designed to carry on working
without a noticeable interruption to the user in the face of such failure.

It is also worth examining the applications for which using HDFS does not work so
well. Although this may change in the future, these are areas where HDFS is not a good
fit today:

Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency. HBase
(Chapter 13) is currently a better choice for low-latency access.

Lots of small files
Because the namenode holds filesystem metadata in memory, the limit to the
number of files in a filesystem is governed by the amount of memory on the name-
node. As a rule of thumb, each file, directory, and block takes about 150 bytes. So,
for example, if you had one million files, each taking one block, you would need
at least 300 MB of memory. Although storing millions of files is feasible, billions
is beyond the capability of current hardware.*

Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the
end of the file. There is no support for multiple writers or for modifications at
arbitrary offsets in the file. (These might be supported in the future, but they are
likely to be relatively inefficient.)

3. See Chapter 9 for a typical machine specification.

4. For an in-depth exposition of the scalability limits of HDFS, see Konstantin V. Shvachko’s “Scalability
of the Hadoop Distributed File System” (http://developer.yahoo.net/blogs/hadoop/2010/05/scalability_of
_the_hadoop_dist.html) and the companion paper, “HDFS Scalability: The limits to growth” (April 2010,
pp. 6-16), http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf), by the same author.
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HDFS Concepts

Blocks

A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystems for a single disk build on this by dealing with data in blocks, which are an
integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes
in size, whereas disk blocks are normally 512 bytes. This is generally transparent to the
filesystem user who is simply reading or writing a file of whatever length. However,
there are tools to perform filesystem maintenance, such as df and fsck, that operate on
the filesystem block level.

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.
Like in a filesystem for a single disk, files in HDFS are broken into block-sized chunks,
which are stored as independent units. Unlike a filesystem for a single disk, a file in
HDFS that is smaller than a single block does not occupy a full block’s worth of un-
derlying storage. When unqualified, the term “block” in this book refers to a block in
HDFS.

Why Is a Block in HDFS So Large?

HDFS blocks are large compared to disk blocks, and the reason is to minimize the cost
of seeks. By making a block large enough, the time to transfer the data from the disk
can be significantly longer than the time to seek to the start of the block. Thus the time
to transfer a large file made of multiple blocks operates at the disk transfer rate.

A quick calculation shows that if the seek time is around 10 ms and the transfer rate is
100 MB/s, to make the seek time 1% of the transfer time, we need to make the block
size around 100 MB. The default is actually 64 MB, although many HDFS installations
use 128 MB blocks. This figure will continue to be revised upward as transfer speeds
grow with new generations of disk drives.

This argument shouldn’t be taken too far, however. Map tasks in MapReduce normally
operate on one block at a time, so if you have too few tasks (fewer than nodes in the
cluster), your jobs will run slower than they could otherwise.

Having a block abstraction for a distributed filesystem brings several benefits. The first
benefit is the most obvious: a file can be larger than any single disk in the network.
There’s nothing that requires the blocks from a file to be stored on the same disk, so
they can take advantage of any of the disks in the cluster. In fact, it would be possible,
if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in
the cluster.
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Second, making the unit of abstraction a block rather than a file simplifies the storage
subsystem. Simplicity is something to strive for in all systems, but is especially
important for a distributed system in which the failure modes are so varied. The storage
subsystem deals with blocks, simplifying storage management (because blocks are a
fixed size, it is easy to calculate how many can be stored on a given disk) and eliminating
metadata concerns (because blocks are just a chunk of data to be stored, file metadata
such as permissions information does not need to be stored with the blocks, so another
system can handle metadata separately).

Furthermore, blocks fit well with replication for providing fault tolerance and availa-
bility. To insure against corrupted blocks and disk and machine failure, each block is
replicated to a small number of physically separate machines (typically three). If a block
becomes unavailable, a copy can be read from another location in a way that is trans-
parent to the client. A block that is no longer available due to corruption or machine
failure can be replicated from its alternative locations to other live machines to bring
the replication factor back to the normal level. (See “Data Integrity” on page 81 for
more on guarding against corrupt data.) Similarly, some applications may choose to
set a high replication factor for the blocks in a popular file to spread the read load on
the cluster.

Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For exam-
ple, running;:

% hadoop fsck / -files -blocks

will list the blocks that make up each file in the filesystem. (See also “Filesystem check
(fsck)” on page 347.)

Namenodes and Datanodes

An HDFS cluster has two types of nodes operating in a master-worker pattern: a name-
node (the master) and a number of datanodes (workers). The namenode manages the
filesystem namespace. It maintains the filesystem tree and the metadata for all the files
and directories in the tree. This information is stored persistently on the local disk in
the form of two files: the namespace image and the edit log. The namenode also knows
the datanodes on which all the blocks for a given file are located; however, it does
not store block locations persistently, because this information is reconstructed from
datanodes when the system starts.

A client accesses the filesystem on behalf of the user by communicating with the name-
node and datanodes. The client presents a filesystem interface similar to a Portable
Operating System Interface (POSIX), so the user code does not need to know about the
namenode and datanode to function.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when
they are told to (by clients or the namenode), and they report back to the namenode
periodically with lists of blocks that they are storing.
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Without the namenode, the filesystem cannot be used. In fact, if the machine running
the namenode were obliterated, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and Hadoop provides two mechanisms for this.

The first way is to back up the files that make up the persistent state of the filesystem
metadata. Hadoop can be configured so that the namenode writes its persistent state
to multiple filesystems. These writes are synchronous and atomic. The usual configu-
ration choice is to write to local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as
a namenode. Its main role is to periodically merge the namespace image with the edit
log to prevent the edit log from becoming too large. The secondary namenode usually
runs on a separate physical machine because it requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged name-
space image, which can be used in the event of the namenode failing. However, the
state of the secondary namenode lags that of the primary, so in the event of total failure
of the primary, data loss is almost certain. The usual course of action in this case is to
copy the namenode’s metadata files that are on NFS to the secondary and run it as the
new primary.

See “The filesystem image and edit log” on page 340 for more details.

HDFS Federation

The namenode keeps a reference to every file and block in the filesystem in memory,
which means that on very large clusters with many files, memory becomes the limiting
factor for scaling (see “How Much Memory Does a Namenode Need?” on page 308).
HDFS Federation, introduced in the 2.x release series, allows a cluster to scale by adding
namenodes, each of which manages a portion of the filesystem namespace. For exam-
ple, one namenode might manage all the files rooted under /user, say, and a second
namenode might handle files under /share.

Under federation, each namenode manages a namespace volume, which is made up of
the metadata for the namespace, and a block pool containing all the blocks for the files
in the namespace. Namespace volumes are independent of each other, which means
namenodes do not communicate with one another, and furthermore the failure of one
namenode does not affect the availability of the namespaces managed by other namen-
odes. Block pool storage is not partitioned, however, so datanodes register with each
namenode in the cluster and store blocks from multiple block pools.

To access a federated HDFS cluster, clients use client-side mount tables to map file
paths to namenodes. This is managed in configuration using ViewFileSystem and the
viewfs:// URIs.

HDFS Concepts | 47



HDFS High-Availability

The combination of replicating namenode metadata on multiple filesystems and using
the secondary namenode to create checkpoints protects against data loss, but it does
not provide high-availability of the filesystem. The namenode is still a single point of
failure (SPOF). If it did fail, all clients—including MapReduce jobs—would be unable
to read, write, or list files, because the namenode is the sole repository of the metadata
and the file-to-block mapping. In such an event the whole Hadoop system would ef-
fectively be out of service until a new namenode could be brought online.

To recover from a failed namenode in this situation, an administrator starts a new
primary namenode with one of the filesystem metadata replicas and configures
datanodes and clients to use this new namenode. The new namenode is not able to
serve requests until it has i) loaded its namespace image into memory, ii) replayed its
edit log, and iii) received enough block reports from the datanodes to leave safe mode.
On large clusters with many files and blocks, the time it takes for a namenode to start
from cold can be 30 minutes or more.

The long recovery time is a problem for routine maintenance too. In fact, because
unexpected failure of the namenode is so rare, the case for planned downtime is actually
more important in practice.

The 2.x release series of Hadoop remedies this situation by adding support for HDFS
high-availability (HA). In this implementation there is a pair of namenodes in an active-
standby configuration. In the event of the failure of the active namenode, the standby
takes over its duties to continue servicing client requests without a significant inter-
ruption. A few architectural changes are needed to allow this to happen:

* The namenodes must use highly available shared storage to share the edit log. (In
the initial implementation of HA this will require an NFS filer, but in future releases
more options will be provided, such as a BookKeeper-based system built on Zoo-
Keeper.) When a standby namenode comes up, it reads up to the end of the shared
edit log to synchronize its state with the active namenode, and then continues to
read new entries as they are written by the active namenode.

* Datanodes must send block reports to both namenodes because the block map-
pings are stored in a namenode’s memory, and not on disk.

* Clients must be configured to handle namenode failover, using a mechanism that
is transparent to users.

If the active namenode fails, the standby can take over very quickly (in a few tens of
seconds) because it has the latest state available in memory: both the latest edit log
entries and an up-to-date block mapping. The actual observed failover time will be
longer in practice (around a minute or so), because the system needs to be conservative
in deciding that the active namenode has failed.
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In the unlikely event of the standby being down when the active fails, the administrator
can still start the standby from cold. This is no worse than the non-HA case, and from
an operational point of view it’s an improvement, because the process is a standard
operational procedure built into Hadoop.

Failover and fencing

The transition from the active namenode to the standby is managed by a new entity in
the system called the failover controller. Failover controllers are pluggable, but the first
implementation uses ZooKeeper to ensure that only one namenode is active. Each
namenode runs a lightweight failover controller process whose job it is to monitor its
namenode for failures (using a simple heartbeating mechanism) and trigger a failover
should a namenode fail.

Failover may also be initiated manually by an administrator, for example, in the case
of routine maintenance. This is known as a graceful failover, since the failover controller
arranges an orderly transition for both namenodes to switch roles.

In the case of an ungraceful failover, however, it is impossible to be sure that the failed
namenode has stopped running. For example, a slow network or a network partition
can trigger a failover transition, even though the previously active namenode is still
running and thinks it is still the active namenode. The HA implementation goes to great
lengths to ensure that the previously active namenode is prevented from doing any
damage and causing corruption—a method known as fencing. The system employs a
range of fencing mechanisms, including killing the namenode’s process, revoking its
access to the shared storage directory (typically by using a vendor-specific NFS com-
mand), and disabling its network port via a remote management command. As a last
resort, the previously active namenode can be fenced with a technique rather graphi-
cally known as STONITH, or “shoot the other node in the head,” which uses a speci-
alized power distribution unit to forcibly power down the host machine.

Client failover is handled transparently by the client library. The simplest implemen-
tation uses client-side configuration to control failover. The HDFS URI uses a logical
hostname that is mapped to a pair of namenode addresses (in the configuration file),
and the client library tries each namenode address until the operation succeeds.

The Command-Line Interface

We’re going to have a look at HDFS by interacting with it from the command line.
There are many other interfaces to HDFS, but the command line is one of the simplest
and, to many developers, the most familiar.

We are going to run HDFS on one machine, so first follow the instructions for setting
up Hadoop in pseudodistributed mode in Appendix A. Later we’ll see how to run HDFS
on a cluster of machines to give us scalability and fault tolerance.
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There are two properties that we set in the pseudodistributed configuration that deserve
further explanation. The first is fs.default.name, set to hdfs://localhost/, which is used
to set a default filesystem for Hadoop. Filesystems are specified by a URI, and here we
have used an hdfs URI to configure Hadoop to use HDFS by default. The HDFS dae-
mons will use this property to determine the host and port for the HDFS namenode.
We'll be running it on localhost, on the default HDFS port, 8020. And HDFS clients
will use this property to work out where the namenode is running so they can connect
to it.

We set the second property, dfs.replication, to 1 so that HDFS doesn’t replicate
filesystem blocks by the default factor of three. When running with a single datanode,
HDFS can’t replicate blocks to three datanodes, so it would perpetually warn about
blocks being under-replicated. This setting solves that problem.

Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the usual filesystem operations,
such as reading files, creating directories, moving files, deleting data, and listing direc-
tories. You can type hadoop fs -help to get detailed help on every command.

Start by copying a file from the local filesystem to HDFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/
quangle.txt

This command invokes Hadoop’s filesystem shell command fs, which supports a
number of subcommands—in this case, we are running -copyFromLocal. The local file
quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance running on
localhost. In fact, we could have omitted the scheme and host of the URI and picked
up the default, hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt
We also could have used a relative path and copied the file to our home directory in
HDFS, which in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyTolLocal quangle.txt quangle.copy.txt

% md5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = a16f231dabbo5e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6bo5e2ba7a339320e7dacd9

The MD?5 digests are the same, showing that the file survived its trip to HDFS and is
back intact.

Finally, let’s look at an HDFS file listing. We create a directory first just to see how it
is displayed in the listing:
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% hadoop fs -mkdir books

% hadoop fs -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books
-Iw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command 1s -1, with a few minor
differences. The first column shows the file mode. The second column is the replication
factor of the file (something a traditional Unix filesystem does not have). Remember
we set the default replication factor in the site-wide configuration to be 1, which is why
we see the same value here. The entry in this column is empty for directories because
the concept of replication does not apply to them—directories are treated as metadata
and stored by the namenode, not the datanodes. The third and fourth columns show
the file owner and group. The fifth column is the size of the file in bytes, or zero for
directories. The sixth and seventh columns are the last modified date and time. Finally,
the eighth column is the absolute name of the file or directory.

File Permissions in HDFS
HDFS has a permissions model for files and directories that is much like POSIX.

There are three types of permission: the read permission (r), the write permission (),
and the execute permission (x). The read permission is required to read files or list the
contents of a directory. The write permission is required to write a file, or for a directory,
to create or delete files or directories in it. The execute permission is ignored for a file
because you can’t execute a file on HDFS (unlike POSIX), and for a directory this
permission is required to access its children.

Each file and directory has an owner, a group, and a mode. The mode is made up of the
permissions for the user who is the owner, the permissions for the users who are
members of the group, and the permissions for users who are neither the owners nor
members of the group.

By default, a client’s identity is determined by the username and groups of the process
itis running in. Because clients are remote, this makes it possible to become an arbitrary
user simply by creating an account of that name on the remote system. Thus, permis-
sions should be used only in a cooperative community of users, as a mechanism for
sharing filesystem resources and for avoiding accidental data loss, and not for securing
resources in a hostile environment. (Note, however, that the latest versions of Hadoop
support Kerberos authentication, which removes these restrictions; see “Secu-
rity” on page 325.) Despite these limitations, it is worthwhile having permissions en-
abled (as it is by default; see the dfs.permissions property), to avoid accidental modi-
fication or deletion of substantial parts of the filesystem, either by users or by automated
tools or programs.
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When permissions checking is enabled, the owner permissions are checked if the cli-
ent’s username matches the owner, and the group permissions are checked if the client
is a member of the group; otherwise, the other permissions are checked.

There is a concept of a super user, which is the identity of the namenode process.
Permissions checks are not performed for the super user.

Hadoop Filesystems

Hadoop has an abstract notion of filesystem, of which HDFS is just one implementa-
tion. The Java abstract class org.apache.hadoop.fs.FileSystem represents a filesystem
in Hadoop, and there are several concrete implementations, which are described in

Table 3-1.

Table 3-1. Hadoop filesystems

Filesystem

Local

HDFS

HFTP

HSFTP

WebHDFS

HAR

KFS (Cloud-
Store)

FTP
S3 (native)

URI scheme

file

hdfs

hftp

hsftp

webhdfs

har

kfs

fip

s3n

Java implementation
(all under org.apache.hadoop)

fs.LocalFileSystem

hdfs.
DistributedFileSystem

hdfs.HftpFileSystem

hdfs.HsftpFileSystem

hdfs.web.WebHdfsFile
System

fs.HarFileSystem

fs.kfs.
KosmosFileSystem

fs.ftp.FTPFileSystem

fs.s3native.
NativeS3FileSystem

Description

Afilesystem for a locally connected disk with client-
side checksums. Use RawLocalFileSystemfora
local filesystem with no checksums. See “LocalFileSys-
tem” on page 82.

Hadoop'sdistributedfilesystem.HDFSisdesignedtowork
efficiently in conjunction with MapReduce.

Afilesystem providing read-only access to HDFS over
HTTP. (Despite its name, HFTP has no connection with
FTP.) Often used with distcp (see “Parallel Copying with
distcp” on page 75) to copy data between HDFS
clusters running different versions.

Afilesystem providing read-only access to HDFS over
HTTPS. (Again, this has no connection with FTP.)

Afilesystem providing secure read-write access to HDFS
over HTTP. WebHDFS is intended as a replacement for
HFTP and HSFTP.

Afilesystem layered on another filesystem for archiving
files. Hadoop Archivesare typically used forarchivingfiles
in HDFS to reduce the namenode’s memory usage. See
“Hadoop Archives” on page 77.

CloudStore (formerly Kosmos filesystem) is a dis-
tributed filesystem like HDFS or Google’s GFS, written in
(++. Find more information about it at
http://code.google.com/p/kosmosfs/.

Afilesystem backed by an FTP server.

Afilesystem backed by Amazon S3. See http://wiki
.apache.org/hadoop/Amazon$3.
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Filesystem  URIscheme Javaimplementation Description
(all under org.apache.hadoop)

S3 (block- 3 fs.s3.53FileSystem Afilesystem backed by Amazon S3, which stores files in

based) blocks (much like HDFS) to overcome S3's 5 GB file size
limit.

Distributed ~ hdfs hdfs.DistributedRaidFi  A“RAID" version of HDFS designed for archival storage.

RAID leSystem For each file in HDFS, a (smaller) parity file is created,

which allows the HDFS replication to be reduced from
three to two, which reduces disk usage by 25% to 30%
while keeping the probability of data loss the same. Dis-
tributed RAID requires thatyourunaRaidNode daemon
on the cluster.

View viewfs viewfs.ViewFileSystem A dient-side mount table for other Hadoop filesystems.
Commonly used to create mount points for federated
namenodes (see “HDFS Federation” on page 47).

Hadoop provides many interfaces to its filesystems, and it generally uses the URI
scheme to pick the correct filesystem instance to communicate with. For example, the
filesystem shell that we met in the previous section operates with all Hadoop filesys-
tems. To list the files in the root directory of the local filesystem, type:

% hadoop fs -1s file:///

Although it is possible (and sometimes very convenient) to run MapReduce programs
that access any of these filesystems, when you are processing large volumes of data,
you should choose a distributed filesystem that has the data locality optimization, no-
tably HDFS (see “Scaling Out” on page 30).

Interfaces

Hadoop is written in Java, and all Hadoop filesystem interactions are mediated through
the Java API. The filesystem shell, for example, is a Java application that uses the Java
FileSystem class to provide filesystem operations. The other filesystem interfaces are
discussed briefly in this section. These interfaces are most commonly used with HDFES,
since the other filesystems in Hadoop typically have existing tools to access the under-
lying filesystem (FTP clients for FTP, S3 tools for S3, etc.), but many of them will work
with any Hadoop filesystem.

HTTP

There are two ways of accessing HDFS over HTTP: directly, where the HDFS daemons
serve HTTP requests to clients; and via a proxy (or proxies), which accesses HDFS on
the client’s behalf using the usual DistributedFileSystem APL. The two ways are illus-
trated in Figure 3-1.
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i) Direct access

(ient Namenode
(ient Datanode
(ient »{ Datanode
ii) HDFS proxies
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— > HTIP request ------ ¥ RPCrequest — — — ¥ block request

Figure 3-1. Accessing HDFS over HTTP directly and via a bank of HDFS proxies

In the first case, directory listings are served by the namenode’s embedded web server
(which runs on port 50070) formatted in XML or JSON, whereas file data is streamed
from datanodes by their web servers (running on port 50075).

The original direct HTTP interface (HFTP and HSFTP) was read-only, but the new
WebHDFS implementation supports all filesystem operations, including Kerberos au-
thentication. WebHDFS must be enabled by setting dfs .webhdfs. enabled to true, which
allows you to use webhdfs URIs.

The second way of accessing HDFS over HTTP relies on one or more standalone proxy
servers. (The proxies are stateless so they can run behind a standard load balancer.) All
traffic to the cluster passes through the proxy. This allows for stricter firewall and
bandwidth-limiting policies to be put in place. It’s common to use a proxy for transfers
between Hadoop clusters located in different data centers.

The original HDFS proxy (in src/contrib/hdfsproxy) was read-only and could be ac-
cessed by clients using the HSFTP FileSystem implementation (hsftp URIs). From re-
lease 1.0.0, there is a new proxy called HttpFS that has read and write capabilities and
exposes the same HTTP interface as WebHDFS, so clients can access both using
webhdfs URIs.

The HTTP REST API that WebHDFS exposes is formally defined in a specification, so
it is expected that over time clients in languages other than Java will be written that use
it directly.
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C

Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface
(it was written as a C library for accessing HDFS, but despite its name it can be used
to access any Hadoop filesystem). It works using the Java Native Interface (JNI) to call
a Java filesystem client.

The C API is very similar to the Java one, but it typically lags the Java one, so newer
features may not be supported. You can find the generated documentation for the C
APLin the libhdfs/docs/api directory of the Hadoop distribution.

Hadoop comes with prebuilt libhdfs binaries for 32-bit Linux, but for other platforms,
you will need to build them yourself using the instructions at http://wiki.apache.org/
hadoop/LibHDFS.

FUSE

Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space
to be integrated as a Unix filesystem. Hadoop’s Fuse-DFS contrib module allows any
Hadoop filesystem (but typically HDFS) to be mounted as a standard filesystem. You
can then use Unix utilities (such as 1s and cat) to interact with the filesystem, as well
as POSIX libraries to access the filesystem from any programming language.

Fuse-DFS is implemented in C using libhdfs as the interface to HDFS. Documentation
for compiling and running Fuse-DFS is located in the src/contrib/fuse-dfs directory of
the Hadoop distribution.

The Java Interface

In this section, we dig into the Hadoop’s FileSystem class: the API for interacting with
one of Hadoop’s filesystems.> Although we focus mainly on the HDFS implementation,
DistributedFileSystem, in general you should strive to write your code against the
FileSystem abstract class, to retain portability across filesystems. This is very useful
when testing your program, for example, because you can rapidly run tests using data
stored on the local filesystem.

Reading Data from a Hadoop URL

One of the simplest ways to read a file from a Hadoop filesystem is by using a
java.net.URL object to open a stream to read the data from. The general idiom is:

InputStream in = null;
try {

5. Inreleases after 1.x, there is a new filesystem interface called FileContext with better handling of multiple
filesystems (so a single FileContext can resolve multiple filesystem schemes, for example) and a cleaner,
more consistent interface.
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in = new URL("hdfs://host/path").openStream();
// process in

} finally {
I0Utils.closeStream(in);

}

There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL
scheme. This is achieved by calling the setURLStreamHandlerFactory method on URL
with an instance of FsUrlStreamHandlerFactory. This method can be called only once
per JVM, so it is typically executed in a static block. This limitation means that if some
other part of your program—perhaps a third-party component outside your control—
sets a URLStreamHandlerFactory, you won’t be able to use this approach for reading data
from Hadoop. The next section discusses an alternative.

Example 3-1 shows a program for displaying files from Hadoop filesystems on standard
output, like the Unix cat command.

Example 3-1. Displaying files from a Hadoop filesystem on standard output using a
URLStreamHandler

public class URLCat {

static {
URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());

}

public static void main(String[] args) throws Exception {
InputStream in = null;
try {
in = new URL(args[0]).openStream();
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);

}
}
}

We make use of the handy I0Utils class that comes with Hadoop for closing the stream
in the finally clause, and also for copying bytes between the input stream and the
output stream (System.out in this case). The last two arguments to the copyBytes
method are the buffer size used for copying and whether to close the streams when the
copy is complete. We close the input stream ourselves, and System.out doesn’t need to
be closed.
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Here’s a sample run:®

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

Reading Data Using the FileSystem API

As the previous section explained, sometimes it is impossible to set a URLStreamHand
lerFactory for your application. In this case, you will need to use the FileSystem API
to open an input stream for a file.

A file in a Hadoop filesystem is represented by a Hadoop Path object (and not
a java.io.File object, since its semantics are too closely tied to the local filesystem).
You can think of a Path as a Hadoop filesystem URI, such as hdfs://localhost/user/tom/
quangle.txt.

FileSystem is a general filesystem API, so the first step is to retrieve an instance for the
filesystem we want to use—HDFS in this case. There are several static factory methods
for getting a FileSystem instance:

public static FileSystem get(Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf, String user)
throws IOException

A Configuration object encapsulatesa client or server’s configuration, which is set using
configuration files read from the classpath, such as conf/core-site.xml. The first method
returns the default filesystem (as specified in the file conf/core-site.xml, or the default
local filesystem if not specified there). The second uses the given URI’s scheme and
authority to determine the filesystem to use, falling back to the default filesystem if no
scheme is specified in the given URI. The third retrieves the filesystem as the given user,
which is important in the context of security (see “Security” on page 325).

In some cases, you may want to retrieve a local filesystem instance, in which case you
can use the convenience method, getLocal():

public static LocalFileSystem getlLocal(Configuration conf) throws IOException

With a FileSysteminstance in hand, we invoke an open() method to get the input stream
for a file:

public FSDataInputStream open(Path f) throws IOException
public abstract FSDataInputStream open(Path f, int bufferSize) throws IOException

The first method uses a default buffer size of 4 KB.

Putting this together, we can rewrite Example 3-1 as shown in Example 3-2.

6. The text is from The Quangle Wangle’s Hat by Edward Lear.
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Example 3-2. Displaying files from a Hadoop filesystem on standard output by using the FileSystem
directly

public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
InputStream in = null;

try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}

}
}

The program runs as follows:

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDatalnputStream

The open() method on FileSystem actually returns a FSDataInputStream rather than a
standard java.io class. This class is a specialization of java.io.DataInputStream with
support for random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;

public class FSDataInputStream extends DataInputStream
implements Seekable, PositionedReadable {
// implementation elided

}

The Seekable interface permits seeking to a position in the file and a query method for
the current offset from the start of the file (getPos()):
public interface Seekable {

void seek(long pos) throws IOException;
long getPos() throws IOException;

Calling seek () with a position that is greater than the length of the file will result in an
I0Exception. Unlike the skip() method of java.io.InputStream, which positions the
stream at a point later than the current position, seek() can move to an arbitrary, ab-
solute position in the file.
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Example 3-3 is a simple extension of Example 3-2 that writes a file to standard out
twice: after writing it once, it seeks to the start of the file and streams through it once
again.

Example 3-3. Displaying files from a Hadoop filesystem on standard output twice, by using seek
public class FileSystemDoubleCat {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
FSDataInputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
in.seek(0); // go back to the start of the file
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

Here’s the result of running it on a small file:

% hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDataInputStream also implements the PositionedReadable interface for reading parts
of a file at a given offset:

public interface PositionedReadable {

public int read(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer) throws IOException;
}

The read() method reads up to length bytes from the given position in the file into the
buffer at the given offset in the buffer. The return value is the number of bytes actually
read; callers should check this value, as it may be less than length. The readFully()
methods will read length bytes into the buffer (or buffer.length bytes for the version
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that just takes a byte array buffer), unless the end of the file is reached, in which case
an EOFException is thrown.

All of these methods preserve the current offset in the file and are thread-safe (although
FSDataInputStream is not designed for concurrent access, therefore, it’s better to create
multiple instances), so they provide a convenient way to access another part of the file
—metadata perhaps—while reading the main body of the file.

Finally, bear in mind that calling seek() is a relatively expensive operation and should
be used sparingly. You should structure your application access patterns to rely on
streaming data (by using MapReduce, for example) rather than performing a large
number of seeks.

Writing Data

The FileSystem class has a number of methods for creating a file. The simplest is the
method that takes a Path object for the file to be created and returns an output stream
to write to:

public FSDataOutputStream create(Path f) throws IOException

There are overloaded versions of this method that allow you to specify whether to
forcibly overwrite existing files, the replication factor of the file, the buffer size to use
when writing the file, the block size for the file, and file permissions.

,—_ The create() methods create any parent directories of the file to be

"‘5"@ written that don’t already exist. Though convenient, this behavior may

be unexpected. If you want the write to fail when the parent directory

doesn’t exist, you should check for the existence of the parent directory
first by calling the exists() method.

There’s also an overloaded method for passing a callback interface, Progressable, so
your application can be notified of the progress of the data being written to the
datanodes:

package org.apache.hadoop.util;
public interface Progressable {

public void progress();

}
As an alternative to creating a new file, you can append to an existing file using the
append() method (there are also some other overloaded versions):

public FSDataOutputStream append(Path f) throws IOException
The append operation allows a single writer to modify an already written file by opening

it and writing data from the final offset in the file. With this API, applications that
produce unbounded files, such as logfiles, can write to an existing file after having
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closed it. The append operation is optional and not implemented by all Hadoop file-
systems. For example, HDFS supports append,” but S3 filesystems don’t.

Example 3-4 shows how to copy a local file to a Hadoop filesystem. We illustrate pro-
gress by printing a period every time the progress () method is called by Hadoop, which
is after each 64 KB packet of data is written to the datanode pipeline. (Note that this
particular behavior is not specified by the API, so it is subject to change in later versions
of Hadoop. The API merely allows you to infer that “something is happening